Displaying all 8 publications

  1. Hermawan H, Mantovani D
    Acta Biomater, 2013 Nov;9(10):8585-92.
    PMID: 23665503 DOI: 10.1016/j.actbio.2013.04.027
    Biodegradable stents are considered to be a recent innovation, and their feasibility and applicability have been proven in recent years. Research in this area has focused on materials development and biological studies, rather than on how to transform the developed biodegradable materials into the stent itself. Currently available stent technology, the laser cutting-based process, might be adapted to fabricate biodegradable stents. In this work, the fabrication, characterization and testing of biodegradable Fe-Mn stents are described. A standard process for fabricating and testing stainless steel 316L stents was referred to. The influence of process parameters on the physical, metallurgical and mechanical properties of the stents, and the quality of the produced stents, were investigated. It was found that some steps of the standard process such as laser cutting can be directly applied, but changes to parameters are needed for annealing, and alternatives are needed to replace electropolishing.
  2. Lee SY, Pereira BP, Yusof N, Selvaratnam L, Yu Z, Abbas AA, et al.
    Acta Biomater, 2009 Jul;5(6):1919-25.
    PMID: 19289306 DOI: 10.1016/j.actbio.2009.02.014
    A poly(vinyl alcohol) (PVA) hydrogel composite scaffold containing N,O-carboxymethylated chitosan (NOCC) was tested to assess its potential as a scaffold for cartilage tissue engineering in a weight-bearing environment. The mechanical properties under unconfined compression for different hydration periods were investigated. The effect of supplementing PVA with NOCC (20wt.% PVA:5vol.% NOCC) produced a porosity of 43.3% and this was compared against a non-porous PVA hydrogel (20g PVA: 100ml of water, control). Under non-hydrated conditions, the porous PVA-NOCC hydrogel behaved in a similar way to the control non-porous PVA hydrogel, with similar non-linear stress-strain response under unconfined compression (0-30% strain). After 7days' hydration, the porous hydrogel demonstrated a reduced stiffness (0.002kPa, at 25% strain), resulting in a more linear stiffness relationship over a range of 0-30% strain. Poisson's ratio for the hydrated non-porous and porous hydrogels ranged between 0.73 and 1.18, and 0.76 and 1.33, respectively, suggesting a greater fluid flow when loaded. The stress relaxation function for the porous hydrogel was affected by the hydration period (from 0 to 600s); however the percentage stress relaxation regained by about 95%, after 1200s for all hydration periods assessed. No significant differences were found between the different hydration periods between the porous hydrogels and control. The calculated aggregate modulus, H(A), for the porous hydrogel reduced drastically from 10.99kPa in its non-hydrated state to about 0.001kPa after 7days' hydration, with the calculated shear modulus reducing from 30.92 to 0.14kPa, respectively. The porous PVA-NOCC hydrogel conformed to a biphasic, viscoelastic model, which has the desired properties required for any scaffold in cartilage tissue engineering.
  3. Luong D, Kesharwani P, Deshmukh R, Mohd Amin MCI, Gupta U, Greish K, et al.
    Acta Biomater, 2016 10 01;43:14-29.
    PMID: 27422195 DOI: 10.1016/j.actbio.2016.07.015
    Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers.

    STATEMENT OF SIGNIFICANCE: It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers.

  4. Pinnagoda K, Larsson HM, Vythilingam G, Vardar E, Engelhardt EM, Thambidorai RC, et al.
    Acta Biomater, 2016 10 01;43:208-217.
    PMID: 27450527 DOI: 10.1016/j.actbio.2016.07.033
    The treatment of congenital malformations or injuries of the urethra using existing autologous tissues can be associated with post-operative complications. Using rat-tail collagen, we have engineered an acellular high-density collagen tube. These tubes were made of 2 layers and they could sustain greater burst pressures than the monolayered tubes. Although it remains a weak material this 2 layered tube could be sutured to the native urethra. In 20 male New Zealand white rabbits, 2cm long grafts were sutured in place after subtotal excision of the urethra. This long-term study was performed in Lausanne (Switzerland) and in Kuala Lumpur (Malaysia). No catheter was placed post-operatively. All rabbits survived the surgical implantation. The animals were evaluated at 1, 3, 6, and 9months by contrast voiding cysto-urethrography, histological examination and immunohistochemistry. Spontaneous re-population of urothelial and smooth muscle cells on all grafts was demonstrated. Cellular organization increased with time, however, 20% of both fistula and stenosis could be observed post-operatively. This off-the shelf scaffold with a promising urethral regeneration has a potential for clinical application.

    STATEMENT OF SIGNIFICANCE: In this study we have tissue engineered a novel cell free tubular collagen based scaffold and used it as a urethral graft in a rabbit model. The novelty of our technique is that the tube can be sutured. Testing showed better burst pressures and the grafts could then be successfully implanted after a urethral excision. This long term study demonstrated excellent biocompatibility of the 2cm graft and gradual regeneration with time, challenging the current literature. Finally, the main impact is that we describe an off-the-shelf and cost-effective product with comparable surgical outcome to the cellular grafts.

  5. Vardar E, Larsson HM, Allazetta S, Engelhardt EM, Pinnagoda K, Vythilingam G, et al.
    Acta Biomater, 2018 02;67:156-166.
    PMID: 29197579 DOI: 10.1016/j.actbio.2017.11.034
    Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α2PI1-8-MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α2PI1-8-MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences.

    STATEMENT OF SIGNIFICANCE: Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor-1 (α2PI1-8-MMP-IGF-1). These bioactive fibrin micro-beads induced human smooth muscle cell migration in vitro. Thus, this injectable bulking agent is apt to be a good candidate for regeneration of urethral sphincter muscle, ensuring a long-lasting treatment for urinary incontinence.

  6. Hu Y, Ran J, Zheng Z, Jin Z, Chen X, Yin Z, et al.
    Acta Biomater, 2018 04 15;71:168-183.
    PMID: 29524675 DOI: 10.1016/j.actbio.2018.02.019
    Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA). The stem cell recruitment ability of CSF scaffold and the multipotency, particularly the tendon forming ability of LSPCs from rabbits were characterized in vitro, while the synergistic effect of the CSF scaffold and LSPCs for ACL regeneration and OA amelioration were investigated in vivo at 1, 3, and 6 months with a rabbit ACL reconstruction model. The CSF scaffold was used as a substitute for the ACL, and LSPCs were injected into the joint cavity after 7 days of the ACL reconstruction. CSF scaffold displayed a controlled release pattern for the encapsulated protein for up to 7 days with an increased stiffness in the mechanical property. LSPCs, which exhibited highly I Collagen and CXCR4 expression, were attracted by SDF-1 and successfully relocated into the CSF scaffold at 1 month in vivo. At 3 and 6 months post-treatment, the CSF scaffold combined with LSPCs (CSFL group) enhanced the regeneration of ACL tissue, and promoted bone tunnel healing. Furthermore, the OA progression was impeded efficiently. Our findings here provided a new strategy that using stem cell recruiting CSF scaffold with tissue-specific stem cells, could be a promising solution for ACL regeneration.

    STATEMENT OF SIGNIFICANCE: In this study, we developed a silk scaffold with increased stiffness and SDF-1 controlled release capacity for ligament repair. This advanced scaffold transplantation combined with intra-articular injection of LSPCs (which was isolated from rabbit ligament for the first time in this study) promoted the regeneration of both the tendinous and bone tunnel portion of ACL. This therapeutic strategy also ameliorated cartilage degeneration and reduced the severity of arthrofibrosis. Hence, combining LSPCs injection with SDF-1-releasing silk scaffold is demonstrated as a therapeutic strategy for ACL regeneration and OA treatment in the clinic.

  7. Higuchi A, Hirad AH, Kumar SS, Munusamy MA, Alarfaj AA
    Acta Biomater, 2020 10 15;116:162-173.
    PMID: 32911107 DOI: 10.1016/j.actbio.2020.09.010
    Thermoresponsive surfaces enable the detachment of cells or cell sheets by decreasing the temperature of the surface when harvesting the cells. However, human pluripotent stem cells (hPSCs), such as embryonic stem cells and induced pluripotent stem cells, cannot be directly cultured on a thermoresponsive surface; hPSCs need a specific extracellular matrix to bind to the integrin receptors on their surfaces. We prepared a thermoresponsive surface by using poly(N-isopropylacrylamide-co-butylacrylate) and recombinant vitronectin to provide an optimal coating concentration for the hPSC culture. hPSCs can be cultured on the same thermoresponsive surface for 5 passages by partial detachment of the cells from the surface by decreasing the temperature for 30 min; then, the remaining hPSCs were subsequently cultured on the same dishes following the addition of new cultivation media. The detached cells, even after continual culture for five passages, showed high pluripotency, the ability to differentiate into cells derived from the 3 germ layers and the ability to undergo cardiac differentiation.
  8. Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, et al.
    Acta Biomater, 2021 Sep 23.
    PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034
    Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links