Displaying all 3 publications

Abstract:
Sort:
  1. Mohd Hilmi AB, Hassan A, Halim AS
    Adv Wound Care (New Rochelle), 2015 May 1;4(5):312-320.
    PMID: 26005597
    Objective: An engineered skin substitute is produced to accelerate wound healing by increasing the mechanical strength of the skin wound via high production of collagen bundles. During the remodeling stage of wound healing, collagen deposition is the most important event. The collagen deposition process may be altered by nutritional deficiency, diabetes mellitus, microbial infection, or radiation exposure, leading to impaired healing. This study describes the fabrication of an engineered bilayer skin substitute and evaluates its effectiveness for the production of collagen bundles in an impaired healing model. Approach: Rats were exposed to 10 Gy of radiation. Two months postirradiation, the wounds were excised and treated with one of three skin replacement products: bilayer engineered skin substitutes, chitosan skin templates, or duoderm(©). The collagen deposition was analyzed by hematoxylin and eosin staining. Results: On day 21 postwound, the irradiated wounds displayed increased collagen bundle deposition after treatment using bilayer engineered skin substitutes (3.4±0.25) and chitosan skin templates (3.2±0.58) compared with duoderm (2.0±0.63). Innovation: We provide the first report on the fabrication of bilayer engineered skin substitutes using high density human dermal fibroblasts cocultured with HFSCs on chitosan skin templates. Conclusion: The high density of fibroblasts significantly increases the penetration of cells into chitosan skin templates, contributing to the fabrication of bilayer engineered skin substitute.
  2. Rastogi A, Kulkarni SA, Deshpande SK, Driver V, Barman H, Bal A, et al.
    Adv Wound Care (New Rochelle), 2023 Aug;12(8):429-439.
    PMID: 36245145 DOI: 10.1089/wound.2022.0093
    We aimed to assess safety and dose-finding efficacy of esmolol hydrochloride (Galnobax) for healing of diabetic foot ulcer (DFU). This is phase 1/2 multicenter, randomized, double-blind vehicle-controlled study. Participants having diabetes and noninfected, full-thickness, neuropathic, grade I or II (Wagner classification) DFU, area 1.5-10 cm2, and unresponsive to standard wound care (at least 4 weeks) were randomized to receive topical Galnobax 14% twice daily (BID), Galnobax 20% BID, Galnobax 20% once daily (OD)+vehicle, or vehicle BID with standard of care. The primary efficacy end point was the reduction in area and volume of target ulcer from baseline to week 12 or wound closure, whichever was earlier. The wound duration was 12.5 weeks (5-49.1 weeks) and wound area 4.10 ± 2.41 cm2 at baseline. The ulcer area reduction was 86.56%, 95.80%, 80.67%, and 82.58% (p = 0.47) in the Galnobax 14%, Galnobax 20%, Galnobax20%+vehicle, and vehicle only groups, respectively. Ulcer volume reduction was 99.40% in the Galnobax14%, 83.36% in Galnobax20%, 55.41% in the Galnobax20%+vehicle, and 84.57% in vehicle group (p = 0.86). The systemic concentration of esmolol was below the quantification limit (10 ng/mL) irrespective of doses of Galnobax (Cmax esmolol acid 340 ng/mL for 14% Galnobax, AUC 2.99 ± 4.31 h*μg/mL after single dose). This is the first clinical study of the short acting beta blocker esmolol hydrochloride used as novel formulation for healing of DFU. We found that esmolol when applied topically over wounds had minimal systemic concentration establishing its safety for wound healing in patients with diabetes. Esmolol hydrochloride is a safe novel treatment for DFU.
  3. Carter MJ, Frykberg RG, Oropallo A, Sen CK, Armstrong DG, Nair HKR, et al.
    Adv Wound Care (New Rochelle), 2023 Apr;12(4):177-186.
    PMID: 35593010 DOI: 10.1089/wound.2022.0041
    Objective: To conduct a systematic review and meta-analysis of recently published randomized controlled trials (RCTs) that employed the use of topical oxygen therapy (TOT) as an adjunct therapy in the treatment of Wagner 1 and 2 diabetic foot ulcers. Approach: Following a literature search of eligible studies from 2010 onward, four RCTs were included. Studies were analyzed for patient and wound characteristics, outcomes, risk of bias, and quality of the evidence assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology. A random-effects meta-analysis for complete wound healing was carried out due to statistical heterogeneity of included studies. Results: Risk of bias judgment (RoB2 analysis) resulted in one low-risk trial and three trials with some risk. One study was determined to be the origin of the statistical heterogeneity. Pooled results showed statistical significance with a risk ratio (RR) of 1.59 (95% confidence interval [CI]: 1.07-2.37; p = 0.021). Sensitivity analysis, based on imputed values for missing outcomes, demonstrated that both the RR and 95% CIs changed little. The GRADE ratings for each domain were as follows: (a) risk of bias: moderate (3); (b) imprecision: moderate (2), high (1); (c) inconsistency: low (2), high (1); (d) indirectness: moderate (2), high (1); and (e) publication bias: moderate (1), high (2). Overall, the evidence was moderate. Innovation: Our study shows that TOT is a viable diabetic foot ulcer therapy. Conclusions: These data support the use of TOT for the treatment of chronic Wagner 1 or 2 diabetic foot ulcers in the absence of infection and ischemia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links