Displaying all 13 publications

  1. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal. Chem., 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
  2. Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DW
    Anal. Chem., 2015 Jun 2;87(11):5486-90.
    PMID: 25962586 DOI: 10.1021/acs.analchem.5b01162
    In this work, independent radial diffusion at arrayed nanointerfaces between two immiscible electrolyte solutions (nanoITIES) was achieved. The arrays were formed at nanopores fabricated by focused ion beam milling of silicon nitride (SiN) membranes, enabling the reproducible and systematic design of five arrays with different ratios of pore center-to-center distance (rc) to pore radius (ra). Voltammetry across water-1,6-dichlorohexane nanoITIES formed at these arrays was examined by the interfacial transfer of tetrapropylammonium ions. The diffusion-limited ion-transfer current increased with the ratio rc/ra, reaching a plateau for rc/ra ≥ 56, which was equivalent to the theoretical current for radial diffusion to an array of independent nanoITIES. As a result, mass transport to the nanoITIES arrays was greatly enhanced due to the decreased overlap of diffusion zones at adjacent nanoITIES, allowing each interface in the array to behave independently. When the rc/ra ratio increased from 13 to 56, the analytical performance parameters of sensitivity and limit of detection were improved from 0.50 (±0.02) A M(-1) to 0.76 (±0.02) A M(-1) and from 0.101 (±0.003) μM to 0.072 (±0.002) μM, respectively. These results provide an experimental basis for the design of arrayed nanointerfaces for electrochemical sensing.
  3. Samat N, Tan PJ, Shaari K, Abas F, Lee HB
    Anal. Chem., 2014 Feb 4;86(3):1324-31.
    PMID: 24405504 DOI: 10.1021/ac403709a
    Photodynamic therapy (PDT) is an alternative treatment for cancer that involves administration of a photosensitive drug or photosensitizer that localizes at the tumor tissue followed by in situ excitation at an appropriate wavelength of light. Tumour tissues are then killed by cytotoxic reactive oxygen species generated by the photosensitizer. Targeted excitation and photokilling of affected tissues is achieved through focal light irradiation, thereby minimizing systemic side effects to the normal healthy tissues. Currently, there are only a small number of photosensitizers that are in the clinic and many of these share the same structural core based on cyclic tetrapyrroles. This paper describes how metabolic tools are utilized to prioritize natural extracts to search for structurally new photosensitizers from Malaysian biodiversity. As proof of concept, we analyzed 278 photocytotoxic extracts using a hyphenated technique of liquid chromatography-mass spectrometry coupled with principal component analysis (LC-MS-PCA) and prioritized 27 extracts that potentially contained new photosensitizers for chemical dereplication using an in-house UPLC-PDA-MS-Photocytotoxic assay platform. This led to the identification of 2 new photosensitizers with cyclic tetrapyrrolic structures, thereby demonstrating the feasibility of the metabolic approach.
  4. Wong WR, Krupin O, Sekaran SD, Mahamd Adikan FR, Berini P
    Anal. Chem., 2014 Feb 4;86(3):1735-43.
    PMID: 24410440 DOI: 10.1021/ac403539k
    We present a compact, cost-effective, label-free, real-time biosensor based on long-range surface plasmon polariton (LRSPP) gold (Au) waveguides for the detection of dengue-specific immunoglobulin M (IgM) antibody, and we demonstrate detection in actual patient blood plasma samples. Two surface functionalization approaches are proposed and demonstrated: a dengue virus serotype 2 (DENV-2) functionalized surface to capture dengue-specific IgM antibody in blood plasma and the reverse, a blood plasma functionalized surface to capture DENV-2. The results obtained via these two surface functionalization approaches are comparable to, or of greater quality, than those collected by conventional IgM antibody capture enzyme linked immunosorbent assay (MAC-ELISA). Our second functionalization approach was found to minimize nonspecific binding, thus improving the sensitivity and accuracy of the test. We also demonstrate reuse of the biosensors by regenerating the sensing surface down to the virus (or antibody) level or down to the bare Au.
  5. Thang LY, See HH, Quirino JP
    Anal. Chem., 2016 Sep 26.
    PMID: 27669824
    The translation of stacking techniques used in capillary electrophoresis (CE) to microchip CE (MCE) in order to improve concentration sensitivity is an important area of study. The success in stacking relies on the generation and control of the stacking boundaries which is a challenge in MCE because the manipulation of solutions is not as straightforward as in CE with a single channel. Here, a simple and rapid on-line sample concentration (stacking strategy) in a battery operated nonaqueous MCE device with a commercially available double T-junction glass chip is presented. A multi-stacking approach was developed in order to circumvent the issues for stacking in nonaqueous MCE. The cationic analytes from the two loading channels were injected under field-enhanced conditions and were focused by micelle-to-solvent stacking. This was achieved by the application of high electric fields along the two loading channels and a low electric field in the separation channel, with one ground electrode in the reservoir closest to the junction. At the junction, the stacked zones were re-stacked under field-enhanced conditions and then injected into the separation channels. The multi-stacking was verified under a fluorescence microscope using Rhodamine 6G as the analyte, revealing a sensitivity enhancement factor (SEF) of 110. The stacking approach was also implemented in the nonaqueous MCE with contactless conductivity detection of the anticancer drug tamoxifen as well as its metabolites. The multi-stacking and analysis time was 40 s and 110 s, respectively, the limit of detections was from 10 to 35 ng/mL, and the SEFs were 20 to 50. The method was able to quantify the target analytes from breast cancer patients.
  6. Yean CY, Kamarudin B, Ozkan DA, Yin LS, Lalitha P, Ismail A, et al.
    Anal. Chem., 2008 Apr 15;80(8):2774-9.
    PMID: 18311943 DOI: 10.1021/ac702333x
    A general purpose enzyme-based amperometric electrochemical genosensor assay was developed wherein polymerase chain reaction (PCR) amplicons labeled with both biotin and fluorescein were detected with peroxidase-conjugated antifluorescein antibody on a screen-printed carbon electrode (SPCE). As a proof of principle, the response selectivity of the genosensor was evaluated using PCR amplicons derived from lolB gene of Vibrio cholerae. Factors affecting immobilization, hybridization, and nonspecific binding were optimized to maximize sensitivity and reduce assay time. On the basis of the background amperometry signals obtained from nonspecific organisms and positive signals obtained from known V. cholerae, a threshold point of 4.20 microA signal was determined as positive. Under the optimum conditions, the limit of detection (LOD) of the assay was 10 CFU/mL of V. cholerae. The overall precision of this assay was good, with the coefficient of variation (CV) being 3.7% using SPCE and intermittent pulse amperometry (IPA) as an electrochemical technique. The assay is sensitive, safe, and cost-effective when compared to conventional agarose gel electrophoresis, real-time PCR, and other enzyme-linked assays for the detection of PCR amplicons. Furthermore, the use of a hand-held portable reader makes it suitable for use in the field.
  7. Yan D, Wong YF, Whittock SP, Koutoulis A, Shellie RA, Marriott PJ
    Anal. Chem., 2018 04 17;90(8):5264-5271.
    PMID: 29575899 DOI: 10.1021/acs.analchem.8b00142
    A novel sequential three-dimensional gas chromatography-high-resolution time-of-flight mass spectrometry (3D GC-accTOFMS) approach for profiling secondary metabolites in complex plant extracts is described. This integrated system incorporates a nonpolar first-dimension (1Dnp) separation step, prior to a microfluidic heart-cut (H/C) of a targeted region(s) to a cryogenic trapping device, directly followed by the rapid reinjection of a trapped solute into a polar second-dimension (2DPEG) column for multidimensional separation (GCnp-GCPEG). For additional separation, the effluent from 2DPEG can then be modulated according to a comprehensive 2D GC process (GC×GC), using an ionic liquid phase as a third-dimension (3DIL) column, to produce a sequential GCnp-GCPEG×GCIL separation. Thus, the unresolved or poorly resolved components, or regions that require further separation, can be precisely selected and rapidly transferred for additional separation on 2D or 3D columns, based on the greater separation realized by these steps. The described integrated system can be used in a number of modes, but one useful approach is to target specific classes of compounds for improved resolution. This is demonstrated through the separation and detection of the oxygenated sesquiterpenes in hop ( Humulus lupulus L.) essential oil and agarwood ( Aquilaria malaccensis) oleoresin. Improved resolution and peak capacity were illustrated through the progressive comparison of the tentatively identified components for GCnp-GCPEG and GCnp-GCPEG×GCIL methods. Relative standard deviations of intraday retentions (1 tR, 2 tR,, and 3 tR) and peak areas of ≤0.01, 0.07, 0.71, and 7.5% were achieved. This analytical approach comprising three GC column selectivities, hyphenated with high-resolution TOFMS detection, should be a valuable adjunct for the improved characterization of complex plant samples, particularly in the area of plant metabolomics.
  8. Joshi P, Okada T, Miyabayashi K, Miyake M
    Anal. Chem., 2018 May 15;90(10):6116-6123.
    PMID: 29613775 DOI: 10.1021/acs.analchem.8b00247
    Organically (octyl amine, OA) surface modified electrocatalyst (OA-Pt/CB) was studied for its oxygen reduction reaction (ORR) activity via dc methods and its charge and mass transfer properties were studied via electrochemical impedance spectroscopy (EIS). Comparison with a commercial catalyst (TEC10V30E) with similar Pt content was also carried out. In EIS, both the catalysts showed a single time-constant with an emerging high-frequency semicircle of very small diameter which was fitted using suitable equivalent circuits. The organically modified catalyst showed lower charge-transfer resistance and hence, low polarization resistance in high potential region as compared to the commercial catalyst. The dominance of kinetic processes was observed at 0.925-1.000 V, whereas domination of diffusion based processes was observed at lower potential region for the organic catalyst. No effect due to the presence of carbon was observed in the EIS spectra. Using the hydrodynamic method, higher current penetration depth was obtained for the organically modified catalyst at 1600 rpm. Exchange current density and Tafel slopes for both the electrocatalysts were calculated from the polarization resistance obtained from EIS which was in correlation with the results obtained from dc methods.
  9. Ng KL, Khor SM
    Anal. Chem., 2017 09 19;89(18):10004-10012.
    PMID: 28845664 DOI: 10.1021/acs.analchem.7b02432
    Guanine (G), adenine (A), thymine (T), and cytosine (C) are the four basic constituents of DNA. Studies on DNA composition have focused especially on DNA damage and genotoxicity. However, the development of a rapid, simple, and multiplex method for the simultaneous measurement of the four DNA bases remains a challenge. In this study, we describe a graphite-based nanocomposite electrode (Au-rGO/MWCNT/graphite) that uses a simple electro-co-deposition approach. We successfully applied the developed sensor for multiplex detection of G, A, T, and C, using square-wave voltammetry. The sensor was tested using real animal and plant DNA samples in which the hydrolysis of T and C could be achieved with 8 mol L-1 of acid. The electrochemical sensor exhibited excellent sensitivity (G = 178.8 nA/μg mL-1, A = 92.9 nA/μg mL-1, T = 1.4 nA/μg mL-1, and C = 15.1 9 nA/μg mL-1), low limit of detection (G, A = 0.5 μg mL-1; T, C = 1.0 μg mL-1), and high selectivity in the presence of common interfering factors from biological matrixes. The reliability of the established method was assessed by method validation and comparison with the ultraperformance liquid chromatography technique, and a correlation of 103.7% was achieved.
  10. Tu Y, Ahmad N, Briscoe J, Zhang DW, Krause S
    Anal. Chem., 2018 07 17;90(14):8708-8715.
    PMID: 29932632 DOI: 10.1021/acs.analchem.8b02244
    Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.
  11. Jajuli MN, Hussin MH, Saad B, Rahim AA, Hébrant M, Herzog G
    Anal. Chem., 2019 May 13.
    PMID: 31050400 DOI: 10.1021/acs.analchem.9b01674
    A new sample preparation method is proposed for the extraction of pharmaceutical compounds (Metformin, Phenyl biguanide, and Phenformin) of varied hydrophilicity, dissolved in an aqueous sample. When in contact with an organic phase, an interfacial potential is imposed by the presence of an ion, tetramethylammonium (TMA+), common to each phase. The interfacial potential difference drives the transfer of ionic analytes across the interface and allows it to reach up to nearly 100% extraction efficiency and a 60-fold enrichment factor in optimized extraction conditions as determined by HPLC analysis.
  12. Wong KS, Lee L, Hung YM, Yeo LY, Tan MK
    Anal. Chem., 2019 Oct 01;91(19):12358-12368.
    PMID: 31500406 DOI: 10.1021/acs.analchem.9b02850
    Rayleigh surface acoustic waves (SAWs) have been demonstrated as a powerful and effective means for driving a wide range of microfluidic actuation processes. Traditionally, SAWs have been generated on piezoelectric substrates, although the cost of the material and the electrode deposition process makes them less amenable as low-cost and disposable components. As such, a "razor-and-blades" model that couples the acoustic energy of the SAW on the piezoelectric substrate through a fluid coupling layer and into a low-cost and, hence, disposable silicon superstrate on which various microfluidic processes can be conducted has been proposed. Nevertheless, it was shown that only bulk vibration in the form of Lamb waves can be excited in the superstrate, which is considerably less efficient and flexible in terms of microfluidic functionality compared to its surface counterpart, that is, the SAW. Here, we reveal an extremely simple way that quite unexpectedly and rather nonintuitively allows SAWs to be generated on the superstrate-by coating the superstrate with a thin gold layer. In addition to verifying the existence of the SAW on the coated superstrate, we carry out finite-difference time domain numerical simulations that not only confirm the experimental observations but also facilitate an understanding of the surprising difference that the coating makes. Finally, we elucidate the various power-dependent particle concentration phenomena that can be carried out in a sessile droplet atop the superstrate and show the possibility for simply carrying out rapid and effective microcentrifugation-a process that is considerably more difficult with Lamb wave excitation on the superstrate.
  13. Leo BF, Fearn S, Gonzalez-Cater D, Theodorou I, Ruenraroengsak P, Goode AE, et al.
    Anal. Chem., 2019 Sep 03;91(17):11098-11107.
    PMID: 31310103 DOI: 10.1021/acs.analchem.9b01704
    There are no methods sensitive enough to detect enzymes within cells, without the use of analyte labeling. Here we show that it is possible to detect protein ion signals of three different H2S-synthesizing enzymes inside microglia after pretreatment with silver nanowires (AgNW) using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Protein fragment ions, including the fragment of amino acid (C4H8N+ = 70 amu), fragments of the sulfur-producing cystathionine-containing enzymes, and the Ag+ ion signal could be detected without the use of any labels; the cells were mapped using the C4H8N+ amino acid fragment. Scanning electron microscopy imaging and energy-dispersive X-ray chemical analysis showed that the AgNWs were inside the same cells imaged by TOF-SIMS and transformed chemically into crystalline Ag2S within cells in which the sulfur-producing proteins were detected. The presence of these sulfur-producing cystathionine-containing enzymes within the cells was confirmed by Western blots and confocal microscopy images of fluorescently labeled antibodies against the sulfur-producing enzymes. Label-free TOF-SIMS is very promising for the label-free identification of H2S-contributing enzymes and their cellular localization in biological systems. The technique could in the future be used to identify which of these enzymes are most contributory.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links