Bioassay and immunohistochemical studies have detected the presence of prosaposin in the central nervous system (CNS) of mammals. Here, first time, we have determined the partial cDNA sequence of pigeon prosaposin and mapped the distribution of its mRNA in the pigeon CNS. The predicted amino acid sequence of pigeon prosaposin showed 93 and 60% identity to chicken and human prosaposin, respectively. In situ hybridization, autoradiograms showed that the prosaposin mRNA expression was found in the olfactory bulb, prepiriform cortex, Wulst, mesopallium, nidopallium, hippocampal formation, thalamus, tuberis nucleus, pre-tectal nucleus, nucleus mesencephalicus lateralis, pars dorsalis, nucleus isthmi, pars parvocellularis and magnocellularis, Edinger-Westphal nucleus, optic tectum, cerebellar cortex and nuclei, vestibular nuclei and gray matter of the spinal cord. These results suggest that the cDNA sequence of pigeon prosaposin is comparable to other vertebrates, and the general distribution pattern of prosaposin mRNA resembles those are found in mammals.
The cranial chamber (proventriculus) and caudal chamber (ventriculus) of the stomach of the Red jungle fowl (Gallus gallus spadiceus) were examined by means of light microscopy. Both chambers presented folds of the tunica mucosa lined by a simple prismatic epithelium that was positive for neutral mucin. Simple tubular glands occupied the lamina propria of both chambers; in the ventriculus of older birds, they showed a coiled base. These ventricular glands were lined by simple cuboidal cells represented by the chief cells and a few large basal cells. The luminal and tubular koilin rodlets and folds of the ventriculus were positive to periodic acid Schiff (PAS) stain. The proventricular glands were situated between the inner and outer layers of the lamina muscularis mucosae. Cells lining the tubulo-alveolar units of the proventricular glands showed a dentate appearance. Vacuoles were not observed, and the cells were negative for Alcian-PAS stain. The tunica submucosa was very thin in the proventricular wall. In the ventriculus, it was not separated from the lamina propria owing to the absence of any lamina muscularis mucosae. The tunica muscularis of the proventriculus was formed by a thick inner layer of circular smooth muscle fibres and a thin outer layer of longitudinal fibres. In addition to these layers, oblique muscle fibres formed the most internal layer of the tunica muscularis in the ventriculus.
The Malayan tapir (Tapirus indicus) is the largest among the four tapir species and is listed as an endangered species. Ultrasound examination and description of the external anatomy of the female reproductive system of three adult females were performed, whereas the internal anatomy was investigated in necropsied samples of four adult females and one subadult female. Descriptions of the male external genitalia were conducted on one adult male. Gross examination revealed the presence of a bicornuate uterus. The uterine cervix is firm and muscular with projections towards its lumen, which is also evident on ultrasonography. The elongated and relatively small ovaries, which have a smooth surface, could not be imaged on ultrasonography, due to their anatomical position. The testes are located inside a slightly pendulous scrotum that is sparsely covered with soft, short hairs. The penis has one dorsal and two lateral penile projections just proximal to the glans penis.
We investigated the histology and carbohydrate content of the parotid and mandibular glands of the barking deer (Muntiacus muntjak). Three adult males were used. Paraffin wax sections of the glands were stained with haematoxylin and eosin (HE), alcian blue (AB), pH 2.5 and periodic acid Schiff (PAS). The acinar cells of the parotid gland were serous, whereas those of the mandibular gland were of the mixed type. The acini of the mandibular gland comprised serous and mucous cells with the mucous type predominating. AB and PAS staining showed high concentrations of acidic and neutral carbohydrates in the mucous cells, but not in the serous cells of the mandibular gland. These carbohydrates were also found in moderate-to-high concentrations in the secreted material in the mandibular duct lumen. However, these carbohydrates were not found in acinar cells of the parotid gland or in the serous cells of the mandibular gland. Thus, carbohydrates in the saliva of the barking deer appear to be produced mainly by the mucous cells of the mandibular glands.
The morphology of the tongue of the adult barking deer, Muntiacus muntjak, was examined by light and scanning electron microscopy. The result showed that the tongue of the barking deer was elongated with a rounded apex. Four types of lingual papillae were observed: filiform, fungiform, vallate and large conical papillae. The filiform papillae represented the most numerous types of lingual papillae. The fungiform papillae were distributed among the filiform papillae on the rostral and the body portions of the tongue. Ten to thirteen vallate papillae were distributed on both sides of the lingual prominence among the large conical papillae. Histologically, both the fungiform and vallate papillae contain taste buds in the epithelial layer. The distribution and types of lingual papillae found in the barking deer are similar to those in the other species that belong to the family Cervidae.
The distribution of lectin bindings in the testis of babirusa, Babyrousa babyrussa (Suidae) was studied histochemically using 10 biotinylated lectins, Peanut agglutinin (PNA), Ricinus communis agglutinin (RCA I), Dolichos biflorus agglutinin (DBA), Vicia villosa agglutinin (VVA), Soybean agglutinin (SBA), Wheat germ agglutinin (WGA), Lens culinaris agglutinin (LCA), Pisum sativum agglutinin (PSA), Concanavalin A(Con A) and Ulex europaeus agglutinin (UEA I). Nine of 10 lectins showed a variety of staining patterns in the seminiferous epithelium and interstitial cells. The acrosome of Golgi-, cap- and acrosome-phase spermatids displayed various PNA, RCA I, VVA, SBA and WGA bindings, indicating the presence of glycoconjugates with D-galactose, N-acetyl-D-galactosamine and N-acetyl-D-glucosamine sugar residues respectively. No affinity was detected in the acrosome of late spermatids. LCA, PSA and Con A which have affinity for D-mannose and D-glucose sugar residues were positive in the cytoplasm of spermatids and spermatocytes. DBA was positive only in spermatogonia. In addition to DBA, positive binding in spermatogonia was found for VVA, WGA and Con A, suggesting the distribution of glycoconjugates with N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, D-mannose and D-glucose sugar residues. Sertoli cells were stained intensely with RCA I, WGA and Con A. In Leydig cells, RCA I and Con A were strongly positive, while WGA, LCA and PSA reactions were weak to moderate. The present findings showed that the distribution pattern of lectin binding in the testis of babirusa is somewhat different from that of pig or other mammals reported previously.
This study investigates the effect of preservation methods on the performance of bovine parietal pericardium grafts in a rat model. Mid-ventral full thickness abdominal wall defects of 3 x 2.5 cm in size were created in 90 male Sprague-Dawley rats (300-400 g), which were divided into three groups of 30 rats each. The abdominal defects of group one and two were repaired with lyophilized and glycerolized bovine pericardium grafts, while the defects of group three were repaired with expanded polytetrafluoroethylene (ePTFE) Mycro Mesh as a positive control. Another group of 30 rats underwent sham operation and was used for comparison as negative control. Each group of rats (n = 30) was divided into five subgroups (n = 6) and killed at 1, 3, 6, 9 and 18 weeks post-surgery for gross and morphological evaluations. The rats tolerated the surgical procedure well with a total mortality of 0.05%. No serious post-operative clinical complications or signs of rejection were encountered. Adhesions between the grafts and the underlying visceral organs observed in the study were mostly results of post-surgical complications. Glycerol preservation delayed degradation and replacement of the grafts, whereas lyophilization caused early resorption and replacement of the grafts. The glycerolized grafts were replaced with thick dense fibrous tissue, and the lyophilized grafts were replaced with thin loose fibrous tissue. The healing characteristic of the bovine pericardium grafts was similar to those of the sham-operated group, and quite different from those of the ePTFE Mycro Mesh. The outcome of the present study confirmed the superiority of glycerolized bovine pericardium grafts over its lyophilized counter part.
Leydig and Sertoli cells of the immature lesser mouse deer testes, obtained in East Malaysia, were observed using light and transmission electron microscopy (TEM). The testes were fixed in 5% glutaraldehyde, post-fixed in 1% OsO4, dehydrated in ethanol, and embedded in Araldite M. Serial semi-thin sections were cut, stained with toluidine blue and observed using light microscopy. Serial ultra-thin sections were cut, stained with uranyl acetate and lead citrate, and examined using TEM. As a result, ultrastructurally, two types of underdeveloped filament bundles were infrequently recognized in Leydig cells, but not in other testicular cells. One type was the underdeveloped bundles of actin filaments (approximately 5 nm in diameter), which were found in the nucleus of Leydig cells. The other type was the underdeveloped bundles of intermediate filaments (approximately 10 nm in diameter), which were found in the cytoplasm of Leydig cells. A multivesicular nuclear body (MNB)--specifically present in the Sertoli cell nucleus of ruminant testes--was infrequently observed. The MNB is situated in the vicinity of nuclear membrane, still in an underdeveloped stage.
The Sumatran rhinoceros (Dicerorhinus sumatrensis) is the smallest of all the rhino species. It is one of the rarest mammals in the world and is in imminent danger of extinction. A study was carried out on seven wild-caught females, three wild-caught males and one captive born female Sumatran rhinoceros at the Sumatran Rhinoceros Breeding Centre in Sungai Dusun, Selangor, Malaysia, beginning 1990. As a result of the paucity of scientific information on the reproductive biology of the Sumatran rhinoceros, this study was conducted to obtain information, which could assist in the captive breeding of this endangered and near extinct species. The anatomy of the reproductive system was based on two post-mortem specimens and transrectal real-time ultrasonography in six adult females. Genitalia of the Sumatran rhinoceros were similar to those of other species of rhinoceroses. The cervix consisted of several folds, the uterus was bicornuate with a short body and prominent horns and the ovaries were completely covered by the fimbriated end of the fallopian tube. The internal genitalia could be imaged by ultrasonography. The testes were located within a pendulous scrotum. Two lateral projections were located at the base of the penis. A well-defined process glandis was present at the tip of the penis. The accessory sex glands and the testes could be imaged by ultrasonography.
Leydig cells of lesser mouse deer (Tragulus javanicus) testes were observed using light and transmission electron microscopies. Sexually mature lesser mouse deer were obtained in East Malaysia. The testes were perfused with 5% glutaraldehyde, postfixed with 1% OsO4, dehydrated in ethanol and embedded in Araldite. The semithin sections were cut, stained with toluidine blue and observed under light microscopy. The ultrathin sections were cut, stained with uranyl acetate and lead citrate, and examined using a JEM-1200 transmission electron microscope. As a result, two types of filament bundles were frequently recognized in Leydig cells, but not in other testicular cells. These bundles were clearly seen at even a light microscopic level. One type was bundles of actin filaments (approximately 5 nm in diameter). These structures were found not only in the cytoplasm but also in the nucleus. The other type was bundles of intermediate filaments (approximately 10 nm in diameter). These structures were found only in the cytoplasm. The existence of filament bundles has never been reported in the testicular cells of another mammalian species. Thus, while bundles of actin and intermediate filaments are specifically present in the Leydig cells of the lesser mouse deer, their functions are still unclear.
As wild population threats for the endangered false gharial (Tomistoma schlegelii) persist, conservation breeding programs, including developing semen collection techniques for subsequent artificial insemination, are becoming important species conservation measures. Developing reproductive biology understanding of a species is important to developing best practices and hopefully maximizing reproductive successes. However, information on crocodylians functional copulatory anatomy in general is lacking. To that end, zoological facilities and conservation centres have the exceptional opportunity to contribute new understandings that may not otherwise be attainable regarding crocodylian reproductive anatomy, particularly during routine physical examinations or post-mortem necropsies. Therefore, to better understand T. schlegelii reproductive biology, to contribute knowledge in support of zoo breeding conservation efforts and to contribute to what is known overall about crocodylian reproduction, we investigated phallic anatomy of adult male Tomistoma from two zoological populations, the St. Louis Zoo, USA and Sungai Dusun Wildlife Reserve, Peninsular Malaysia. Here, we present the gross anatomical features and histological analysis of underlying tissue-level details in pursuit of a better understanding of copulatory function and associated gamete transfer mechanisms. While much of the overall Tomistoma phallic morphology and inferred function corresponds to that of other crocodylian species and speaks to conserved aspects of functional anatomy across taxa, species-specific aspects of glans and glans tip morphology are also identified. These novelties are discussed in a general function and overall broader evolutionary contexts.
The aim of the study was to investigate the location of motor neuron somata of geniohyoid muscle in rat. Nine Sprague-Dawley rats were used in this study. Operations were performed under general anaesthesia. Nembutal sodium, 40 mg per kg intraperitoneally was used for anaesthesia. 0.02 to 0.05 ml of 30% horseradish peroxidase (Sigma Type VI) solution in normal saline was injected into the exposed right geniohyoid muscle. After 48 hr, the animals were fixed by perfusion through left ventricle of heart, first by 100 ml normal saline and then with 500 ml of 1.25% glutaraldehyde and 1% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, at room temperature, and finally with 500 ml of 10% sucrose in the same buffer at 4°C. The medulla oblongata and first cervical segment of spinal cord were removed, kept in 10% sucrose in above phosphate buffer at 4°C for 24 hr. Thereafter, their serial transverse sections were cut in a cryostat at a thickness of 60 μm. The sections were treated according to tetramethyl benzidine (TMB)-horseradish peroxidase (HRP) method. HRP-labelled neuron somata were observed at the following sites: (a) In ventral part of right main hypoglossal nucleus in upper two-thirds of the closed part of medulla oblongata. (b) In ventrolateral subnucleus of hypoglossal nucleus in lower third of closed part of medulla oblongata. (c) At spinomedullary junction, they were located in dorsomedial part of right ventral grey column; a few were also seen here scattered on right side of central canal and among corticospinal fibres.
This study was conducted to describe the morphometrics of nuchal ligament and investigate the effects of different neck and body positions on the nuchal ligament in greyhounds. Nine adult greyhounds cadavers without any locomotion abnormalities were dissected through the neck musculature on the left side to expose the nuchal ligament. Three pins were placed to mark regions of interest on the nuchal ligament: at one cm cranial to the site of origin (the most dorsal point of the spinous process of the first thoracic vertebra), at the midpoint of the nuchal ligament and one cm caudal to the nuchal ligament site of insertion (close to the caudal aspect of the spinous process of the axis). Each cadaver was positioned on a masonite board and placed on a table on the floor in their lateral recumbency and seven different standardized body positions; P1-P7 were mimicked using goniometers and metal wires. Photographs were taken by positioning and fixing the camera above the nuchal ligament region. The length and widths (W1, W2 and W3) of nuchal ligament were measured using Image Pro software (Image-Pro Express version 5.0) on standardized photographs of each of seven different body and neck positions. The length of nuchal ligament in relation to the neutral position (P1) was less (- 7%, p > 0·05) in P6 (neck elevated) and increased in all other positions (+1%, p > 0·05 for P2, +19%, p 0·05 for P5, +40%, p
Histology is often taught in higher education settings using online virtual microscopes (VM). This study aimed to develop and evaluate the use of VM in teaching on a BSc degree at the University of Nottingham by surveying students and staff. A key development was the use of an e-workbook so that students were actively engaged in creating their own bespoke revision material. Subsequently, this approach was used in a second study evaluating the use of VM in teaching the histology and pathology of the gastrointestinal (GI) tract via group work with students from two BSc courses at the University of Nottingham; one based at Derby (RDHC) and the other in Malaysia (UNMC). Students worked together in groups to complete an e-workbook, develop a presentation, and decide how to collaborate and communicate. An evaluation of these activities revealed advantages in developing transferrable skills, and good engagement with both the histology topic and group work. Analysis of assessment of the module at UNMC showed that student performance improved in the histology-based module after the intervention (p