Displaying all 17 publications

Abstract:
Sort:
  1. Rothan HA, Bahrani H, Shankar EM, Rahman NA, Yusof R
    Antiviral Res, 2014 Aug;108:173-80.
    PMID: 24929084 DOI: 10.1016/j.antiviral.2014.05.019
    Chikungunya virus (CHIKV) outbreaks have led to a serious economic burden, as the available treatment strategies can only alleviate disease symptoms, and no effective therapeutics or vaccines are currently available for human use. Here, we report the use of a new cost-effective approach involving production of a recombinant antiviral peptide-fusion protein that is scalable for the treatment of CHIKV infection. A peptide-fusion recombinant protein LATA-PAP1-THAN that was generated by joining Latarcin (LATA) peptide with the N-terminus of the PAP1 antiviral protein, and the Thanatin (THAN) peptide to the C-terminus, was produced in Escherichia coli as inclusion bodies. The antiviral LATA-PAP1-THAN protein showed 89.0% reduction of viral plaque formation compared with PAP1 (46.0%), LATA (67.0%) or THAN (79.3%) peptides alone. The LATA-PAP1-THAN protein reduced the viral RNA load that was 0.89-fold compared with the untreated control cells. We also showed that PAP1 resulted in 0.44-fold reduction, and THAN and LATA resulting in 0.78-fold and 0.73-fold reductions, respectively. The LATA-PAP1-THAN protein inhibited CHIKV replication in the Vero cells at an EC50 of 11.2μg/ml, which is approximately half of the EC50 of PAP1 (23.7μg/ml) and protected the CHIKV-infected mice at the dose of 0.75mg/ml. We concluded that production of antiviral peptide-fusion protein in E. coli as inclusion bodies could accentuate antiviral activities, enhance cellular internalisation, and could reduce product toxicity to host cells and is scalable to epidemic response quantities.
  2. Lo MK, Nichol ST, Spiropoulou CF
    Antiviral Res, 2014 Jun;106:53-60.
    PMID: 24680955 DOI: 10.1016/j.antiviral.2014.03.011
    Nipah virus (NiV) outbreaks have occurred in Malaysia, India, and Bangladesh, and the virus continues to cause annual outbreaks of fatal human encephalitis in Bangladesh due to spillover from its bat host reservoir. Due to its high pathogenicity, its potential use for bio/agro-terrorism, and to the current lack of approved therapeutics, NiV is designated as an overlap select agent requiring biosafety level-4 containment. Although the development of therapeutic monoclonal antibodies and soluble protein subunit vaccines have shown great promise, the paucity of effective antiviral drugs against NiV merits further exploration of compound libraries using rapid quantitative antiviral assays. As a proof-of-concept study, we evaluated the use of fluorescent and luminescent reporter NiVs for antiviral screening. We constructed and rescued NiVs expressing either Renilla luciferase or green fluorescent protein, and characterized their reporter signal kinetics in different cell types as well as in the presence of several inhibitors. The 50% effective concentrations (EC50s) derived for inhibitors against both reporter viruses are within range of EC50s derived from virus yield-based dose-response assays against wild-type NiV (within 1Log10), thus demonstrating that both reporter NiVs can serve as robust antiviral screening tools. Utilizing these live NiV-based reporter assays requires modest instrumentation, and circumvents the time and labor-intensive steps associated with cytopathic effect or viral antigen-based assays. These reporter NiVs will not only facilitate antiviral screening, but also the study of host cell components that influence the virus life cycle.
  3. Luby SP
    Antiviral Res, 2013 Oct;100(1):38-43.
    PMID: 23911335 DOI: 10.1016/j.antiviral.2013.07.011
    Nipah virus, a paramyxovirus whose wildlife reservoir is Pteropus bats, was first discovered in a large outbreak of acute encephalitis in Malaysia in 1998 among persons who had contact with sick pigs. Apparently, one or more pigs was infected from bats, and the virus then spread efficiently from pig to pig, then from pigs to people. Nipah virus outbreaks have been recognized nearly every year in Bangladesh since 2001 and occasionally in neighboring India. Outbreaks in Bangladesh and India have been characterized by frequent person-to-person transmission and the death of over 70% of infected people. Characteristics of Nipah virus that increase its risk of becoming a global pandemic include: humans are already susceptible; many strains are capable of limited person-to-person transmission; as an RNA virus, it has an exceptionally high rate of mutation: and that if a human-adapted strain were to infect communities in South Asia, high population densities and global interconnectedness would rapidly spread the infection. Appropriate steps to estimate and manage this risk include studies to explore the molecular and genetic basis of respiratory transmission of henipaviruses, improved surveillance for human infections, support from high-income countries to reduce the risk of person-to-person transmission of infectious agents in low-income health care settings, and consideration of vaccination in communities at ongoing risk of exposure to the secretions and excretions of Pteropus bats.
  4. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al.
    Antiviral Res, 2013 Oct;100(1):8-13.
    PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012
    Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
  5. Hussin A, Md Nor NS, Ibrahim N
    Antiviral Res, 2013 Nov;100(2):306-13.
    PMID: 24055837 DOI: 10.1016/j.antiviral.2013.09.008
    Eleven strains of acyclovir (ACV)-resistant herpes simplex virus type 1 (HSV-1) were generated from HSV-1 clinical isolates by exposure to ACV. Genotype of the thymidine kinase (TK) and DNA polymerase (pol) genes from these mutants were further analyzed. Genotypic analysis revealed four non-synonymous mutations in TK gene associated with gene polymorphism and two to three non-synonymous mutations in DNA pol gene. Seven and six strains contained at least one resistance-associated mutation at TK and DNA pol gene, respectively. Resistance-associated mutations within the TK gene consisted of 64% of non-synonymous frameshift mutations within the homopolymer region of G's and C's, and 36% of non-synonymous nucleotide substitutions of the conserved gene region (C336Y, R51W and R222H), nucleotide that produced stop codon (L288Stop) and two amino acid substitutions outside the conserved region (E39G & L208F). There were 10 non-synonymous amino acid substitutions located outside the conserved region with the unclear significance to confer resistance observed. Resistance-associated mutations in DNA pol gene include insertion of G at the homopolymer region of G's (794-797) and amino acid substitutions inside (V621S) or outside (H1228D) the conserved region. In silico analysis of the mutated TK (C336Y, R51W and L208F), and DNA pol (V621S and H1228D) suggested structural changes that might alter the stability of these proteins. However, there were several mutations with unclear significance to confer ACV-resistance identified, especially mutations outside the conserved region.
  6. Hurt AC, Selleck P, Komadina N, Shaw R, Brown L, Barr IG
    Antiviral Res, 2007 Mar;73(3):228-31.
    PMID: 17112602
    Since 2003, highly pathogenic A(H5N1) influenza viruses have been the cause of large-scale death in poultry and the subsequent infection and death of over 140 humans. A group of 55 influenza A(H5N1) viruses isolated from various regions of South East Asia between 2004 and 2006 were tested for their susceptibility to the anti-influenza drugs the neuraminidase inhibitors and adamantanes. The majority of strains were found to be fully sensitive to the neuraminidase inhibitors oseltamivir carboxylate, zanamivir and peramivir; however two strains demonstrated increased IC50 values. Sequence analysis of these strains revealed mutations in the normally highly conserved residues 116 and 117 of the N1 neuraminidase. Sequence analysis of the M2 gene showed that all of the A(H5N1) viruses from Vietnam, Malaysia and Cambodia contained mutations (L26I and S31N) associated with resistance to the adamantane drugs (rimantadine and amantadine), while strains from Indonesia were found to be a mix of both adamantane resistant (S31N) and sensitive viruses. None of the A(H5N1) viruses from Myanmar contained mutations known to confer adamantane resistance. These results support the use of neuraminidase inhibitors as the most appropriate class of antiviral drug to prevent or treat human A(H5N1) virus infections.
  7. Tan SH, Ong KC, Perera D, Wong KT
    Antiviral Res, 2016 Aug;132:196-203.
    PMID: 27340013 DOI: 10.1016/j.antiviral.2016.04.015
    BACKGROUND: Enterovirus A71 (EV-A71) encephalomyelitis is an often fatal disease for which there is no specific treatment available. Passive immunization with a specific monoclonal antibody to EV-A71 was used on a murine model of EV-A71 encephalomyelitis to evaluate its therapeutic effectiveness before and after established central nervous system (CNS) infection.

    METHODS: Mice were intraperitoneally-infected with a mouse-adapted EV-A71 strain and treated with a dose of monoclonal antibody (MAb) daily for 3 days on day 1, 2 and 3 post-infection or for 3 days on 3, 4 and 5 post-infection. Treatment effectiveness was evaluated by signs of infection and survival rate. Histopathology and qPCR analyses were performed on mice sacrificed a day after completing treatment.

    RESULTS: In mock-treated mice, CNS infection was established from day 3 post-infection. All mice treated before established CNS infection, survived and recovered completely without CNS infection. All mice treated after established CNS infection survived with mild paralysis, and viral load and antigens/RNA at day 6 post-infection were significantly reduced.

    CONCLUSIONS: Passive immunization with our MAb could prevent CNS infection in mice if given early before the establishment of CNS infection. It could also ameliorate established CNS infection if optimal and repeated doses were given.

  8. Rothan HA, Bahrani H, Abdulrahman AY, Mohamed Z, Teoh TC, Othman S, et al.
    Antiviral Res, 2016 Mar;127:50-6.
    PMID: 26794398 DOI: 10.1016/j.antiviral.2016.01.006
    Chikungunya virus (CHIKV) infection is a persistent problem worldwide due to efficient adaptation of the viral vectors, Aedes aegypti and Aedes albopictus mosquitoes. Therefore, the absence of effective anti-CHIKV drugs to combat chikungunya outbreaks often leads to a significant impact on public health care. In this study, we investigated the antiviral activity of drugs that are used to alleviate infection symptoms, namely, the non-steroidal anti-inflammatory drugs (NSAIDs), on the premise that active compounds with potential antiviral and anti-inflammatory activities could be directly subjected for human use to treat CHIKV infections. Amongst the various NSAID compounds, Mefenamic acid (MEFE) and Meclofenamic acid (MECLO) showed considerable antiviral activity against viral replication individually or in combination with the common antiviral drug, Ribavirin (RIBA). The 50% effective concentration (EC50) was estimated to be 13 μM for MEFE, 18 μM for MECLO and 10 μM for RIBA, while MEFE + RIBA (1:1) exhibited an EC50 of 3 μM, and MECLO + RIBA (1:1) was 5 μM. Because MEFE is commercially available and its synthesis is easier compared with MECLO, MEFE was selected for further in vivo antiviral activity analysis. Treatment with MEFE + RIBA resulted in a significant reduction of hypertrophic effects by CHIKV on the mouse liver and spleen. Viral titre quantification in the blood of CHIKV-infected mice through the plaque formation assay revealed that treatment with MEFE + RIBA exhibited a 6.5-fold reduction compared with untreated controls. In conclusion, our study demonstrated that MEFE in combination with RIBA exhibited significant anti-CHIKV activity by impairing viral replication in vitro and in vivo. Indeed, this finding may lead to an even broader application of these combinatorial treatments against other viral infections.
  9. Lam SK
    Antiviral Res, 2003 Jan;57(1-2):113-9.
    PMID: 12615307
    Nipah virus, a newly emerging deadly paramyxovirus isolated during a large outbreak of viral encephalitis in Malaysia, has many of the physical attributes to serve as a potential agent of bioterrorism. The outbreak caused widespread panic and fear because of its high mortality and the inability to control the disease initially. There were considerable social disruptions and tremendous economic loss to an important pig-rearing industry. This highly virulent virus, believed to be introduced into pig farms by fruit bats, spread easily among pigs and was transmitted to humans who came into close contact with infected animals. From pigs, the virus was also transmitted to other animals such as dogs, cats, and horses. The Nipah virus has the potential to be considered an agent of bioterrorism.
  10. Li Y, Yu P, Qu C, Li P, Li Y, Ma Z, et al.
    Antiviral Res, 2020 04;176:104743.
    PMID: 32057771 DOI: 10.1016/j.antiviral.2020.104743
    Enteric viruses including hepatitis E virus (HEV), human norovirus (HuNV), and rotavirus are causing global health issues. The host interferon (IFN) response constitutes the first-line defense against viral infections. Melanoma Differentiation-Associated protein 5 (MDA5) is an important cytoplasmic receptor sensing viral infection to trigger IFN production, and on the other hand it is also an IFN-stimulated gene (ISG). In this study, we investigated the effects and mode-of-action of MDA5 on the infection of enteric viruses. We found that MDA5 potently inhibited HEV, HuNV and rotavirus replication in multiple cell models. Overexpression of MDA5 induced transcription of important antiviral ISGs through IFN-like response, without triggering of functional IFN production. Interestingly, MDA5 activates the expression and phosphorylation of STAT1, which is a central component of the JAK-STAT cascade and a hallmark of antiviral IFN response. However, genetic silencing of STAT1 or pharmacological inhibition of the JAK-STAT cascade only partially attenuated the induction of ISG transcription and the antiviral function of MDA5. Thus, we have demonstrated that MDA5 effectively inhibits HEV, HuNV and rotavirus replication through provoking a non-canonical IFN-like response, which is partially dependent on JAK-STAT cascade.
  11. Tan CW, Chan YF, Quah YW, Poh CL
    Antiviral Res, 2014 Jul;107:35-41.
    PMID: 24769243 DOI: 10.1016/j.antiviral.2014.04.004
    Enterovirus 71 (EV-71) infections are generally manifested as mild hand, foot and mouth disease, but have been reported to cause severe neurological complications with high mortality rates. Treatment options remain limited due to the lack of antivirals. Octaguanidinium-conjugated morpholino oligomers (vivo-MOs) are single-stranded DNA-like antisense agents that can readily penetrate cells and reduce gene expression by steric blocking of complementary RNA sequences. In this study, inhibitory effects of three vivo-MOs that are complementary to the EV-71 internal ribosome entry site (IRES) and the RNA-dependent RNA polymerase (RdRP) were tested in RD cells. Vivo-MO-1 and vivo-MO-2 targeting the EV-71 IRES showed significant viral plaque reductions of 2.5 and 3.5 log10PFU/ml, respectively. Both vivo-MOs reduced viral RNA copies and viral capsid expression in RD cells in a dose-dependent manner. In contrast, vivo-MO-3 targeting the EV-71 RdRP exhibited less antiviral activity. Both vivo-MO-1 and 2 remained active when administered either 4h before or within 6h after EV-71 infection. Vivo-MO-2 exhibited antiviral activities against poliovirus (PV) and coxsackievirus A16 but vivo-MO-1 showed no antiviral activities against PV. Both the IRES-targeting vivo-MO-1 and vivo-MO-2 inhibit EV-71 RNA translation. Resistant mutants arose after serial passages in the presence of vivo-MO-1, but none were isolated against vivo-MO-2. A single T to C substitution at nucleotide position 533 was sufficient to confer resistance to vivo-MO-1. Our findings suggest that IRES-targeting vivo-MOs are good antiviral candidates for treating early EV-71 infection, and vivo-MO-2 is a more favorable candidate with broader antiviral spectrum against enteroviruses and are refractory to antiviral resistance.
  12. Rothan HA, Zhong Y, Sanborn MA, Teoh TC, Ruan J, Yusof R, et al.
    Antiviral Res, 2019 11;171:104590.
    PMID: 31421166 DOI: 10.1016/j.antiviral.2019.104590
    Two major flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), cause severe health and economic burdens worldwide. Recently, genome-wide screenings have uncovered the importance of regulators of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway for flavivirus replication in host cells. Here we report the identification of the compound Bardoxolone methyl (CDDO-me) as a potent inhibitor of the Hrd1 ubiquitin ligase-mediated ERAD, which possesses a broad-spectrum activity against both DENV and ZIKV. Cellular thermal shift assay (CETSA) suggested that CDDO-me binds to grp94, a key component of the Hrd1 pathway, at a low nanomolar concentration, whereas interaction was not detected with its paralog Hsp90. CDDO-me and the grp94 inhibitor PU-WS13 substantially suppressed DENV2 replication and the cytopathic effects caused by DENV and ZIKV infection. The antiviral activities of both compounds were demonstrated for all four DENV serotypes and four ZIKV strains in multiple human cell lines. This study defines grp94 as a crucial host factor for flavivirus replication and identified CDDO-me as a potent small molecule inhibitor of flavivirus infection. Inhibition of grp94 may contribute to the antiviral activity of CDDO-me. Further investigation of grp94 inhibitors may lead to a new class of broad-spectrum anti-flaviviral medications.
  13. Tan CW, Sam IC, Chong WL, Lee VS, Chan YF
    Antiviral Res, 2017 07;143:186-194.
    PMID: 28457855 DOI: 10.1016/j.antiviral.2017.04.017
    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.
  14. Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJ, Higgs S, et al.
    Antiviral Res, 2016 Sep;133:50-61.
    PMID: 27460167 DOI: 10.1016/j.antiviral.2016.07.009
    This study focuses on the antiviral activity of selected flavonoids against the Chikungunya virus (CHIKV), a mosquito-transmitted virus that can cause incapacitating arthritis in infected individuals. Based on the results of screening on Vero cells, the tested compounds were evaluated further with various assays, including cytotoxicity assay, virus yield assay by quantitative reverse transcription polymerase chain reaction (qRT-PCR), virus RNA replication assay with a CHIKV replicon cell line, Western blotting, and quantitative immunofluorescence assay. Baicalein, fisetin, and quercetagetin displayed potent inhibition of CHIKV infection, with 50% inhibitory concentrations [IC50] of 1.891 μg/ml (6.997 μM), 8.444 μg/ml (29.5 μM), and 13.85 μg/ml (43.52 μM), respectively, and with minimal cytotoxicity. The time-of-addition studies and various antiviral assays demonstrated that baicalein and quercetagetin mainly inhibited CHIKV binding to the Vero cells and displayed potent activity against extracellular CHIKV particles. The qRT-PCR, immunofluorescence assay, and Western blot analyses indicated that each of these flavonoids affects CHIKV RNA production and viral protein expression. These data provide the first evidence of the intracellular anti-CHIKV activity of baicalein, fisetin, and quercetagetin.
  15. Oo A, Rausalu K, Merits A, Higgs S, Vanlandingham D, Bakar SA, et al.
    Antiviral Res, 2018 02;150:101-111.
    PMID: 29269135 DOI: 10.1016/j.antiviral.2017.12.012
    The past decade has seen the re-emergence of Chikungunya virus (CHIKV) as a major global health threat, affecting millions around the world. Although fatal infections are rare among infected patients, the occurrence of long-lasting polyarthralgia has a significant impact on patients' quality of lives and ability to work. These issues were the stimuli for this study to determine the potential of baicalin, a bioflavonoid, as the novel antiviral compound against CHIKV. It was found that baicalin was well tolerated by Vero, BHK-21 and HEK 293T cells with maximal nontoxic doses >600 μM, ≈ 350 μM and ≈110 μM, respectively. Antiviral assays indicated that baicalin was the most effective inhibitor when tested for its direct virucidal activity with EC50 ≈ 7 μM, followed by inhibition of virus entry into the host cell, attachment of virus particle to cellular receptors and finally intracellular replication of viral RNA genome. In silico analysis using molecular docking demonstrated close interactions between baicalin and CHIKV envelope protein with considerably strong binding affinity of -9.7 kcal/mol. qRT-PCR analysis revealed that baicalin had the greatest effect on the synthesis of viral negative stand RNA with EC50 ≈ 0.4 μM followed by the inhibition of synthesis of positive-strand genomic (EC50 ≈ 13 μM) and subgenomic RNAs (EC50 ≈ 14 μM). These readings indicate that the compound efficiently inhibits replicase complexes formation but is a less potent inhibitor of existing replicase complexes. Coherent with this hypothesis, the use of recombinant CHIKV replicons harboring Renilla luciferase marker showed that replication of corresponding replicon RNAs was only slightly downregulated at higher doses of baicalin, with EC50 > 100 μM. Immunofluorescence and western blotting experiments demonstrated dose-dependent inhibition of expression of different viral proteins. It was also observed that levels of important protein markers for cellular autophagy (LC3) and apoptosis (Bax) were reduced in baicalin treatment groups as compared with untreated virus infected controls. In summary, given its low toxicity and high efficacy against CHIKV, baicalin has great potential to be developed as the novel antiviral compound for CHIKV. In vivo studies to evaluate its activity in a more complexed system represent a necessary step for future analysis.
  16. Weaver SC, Reisen WK
    Antiviral Res, 2010 Feb;85(2):328-45.
    PMID: 19857523 DOI: 10.1016/j.antiviral.2009.10.008
    Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8, invaded Europe after climate warming and enabled the major midge vector to expand is distribution northward into southern Europe, extending the transmission season and vectorial capacity of local midge species. Perhaps the greatest health risk of arboviral emergence comes from extensive tropical urbanization and the colonization of this expanding habitat by the highly anthropophilic (attracted to humans) mosquito, Aedes aegypti. These factors led to the emergence of permanent endemic cycles of urban DENV and CHIKV, as well as seasonal interhuman transmission of yellow fever virus. The recent invasion into the Americas, Europe and Africa by Aedes albopictus, an important CHIKV and secondary DENV vector, could enhance urban transmission of these viruses in tropical as well as temperate regions. The minimal requirements for sustained endemic arbovirus transmission, adequate human viremia and vector competence of Ae. aegypti and/or Ae. albopictus, may be met by two other viruses with the potential to become major human pathogens: Venezuelan equine encephalitis virus, already an important cause of neurological disease in humans and equids throughout the Americas, and Mayaro virus, a close relative of CHIKV that produces a comparably debilitating arthralgic disease in South America. Further research is needed to understand the potential of these and other arboviruses to emerge in the future, invade new geographic areas, and become important public and veterinary health problems.
  17. Kumari R, Guo Z, Kumar A, Wiens M, Gangappa S, Katz JM, et al.
    Antiviral Res, 2020 Apr;176:104747.
    PMID: 32092305 DOI: 10.1016/j.antiviral.2020.104747
    Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links