Aging related reduction in cerebral blood flow (CBF) has been linked with neurodegenerative disorders including Alzheimer's disease and dementia. Experimentally, a condition of chronic cerebral hypoperfusion due to reduced CBF can be induced by permanent bilateral occlusion of common carotid arteries (2-vessel occlusion, 2VO) in rats. Since oxidative stress, leading to neuronal apoptosis and death, is one of the mechanisms, which is thought to play a significant role in chronic degenerative neurological disorders, the present study was planned to assess the ROS status by measuring the levels of anti-oxidant enzymes that might occur during chronic cerebral hypoperfusion. Antioxidant enzymes namely glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase were measured in the brain tissue at eight weeks of 2VO induction in rats. Results show significantly elevated levels of GPx, SOD, and catalase enzymes as compared with the control group. It is possible that compensatory rise in antioxidant enzymes occurs in response to increased oxidative stress following ischemic insult.
Asphyxial death has been a problem for forensic investigations due to the absence of a validated biomarker for the diagnosis of this event. Recently, research on brain affection by asphyxia raised hopes on the possible use of CNS markers for asphyxia. The cytoskeletal proteins seem to be attractive targets as they are vulnerable to hypoxia and can be affected in asphyxial deaths. Tau, an important cytoskeletal protein, showed affection in many neurodegenerative disorders and recently in some acute incidences like trauma and brain ischemia. In this report we show the affection of the normal pattern of tau and pathological aggregates of tau in the case of brain hypoxia. This may give new clues to asphyxial death investigations.