Displaying all 12 publications

  1. Leong YH, Gan CY, Majid MI
    Arch Environ Contam Toxicol, 2014 Jul;67(1):21-8.
    PMID: 24651928 DOI: 10.1007/s00244-014-0019-5
    A total of 127 and 177 seafood samples from Malaysia were analyzed for polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs), respectively. The World Health Organization-toxic-equivalency quotients (WHO-TEQ) of PCDD/Fs varied from 0.13 to 1.03 pg TEQ g(-1), whereas dl-PCBs ranged from 0.33 to 1.32 pg TEQ g(-1). Based on food-consumption data from the global environment monitoring system-food contamination monitoring and assessment programme, calculated dietary exposures to PCDD/Fs and dl-PCBs from seafood for the general population in Malaysia were 0.042 and 0.098 pg TEQ kg(-1) body weight day(-1), respectively. These estimations were quite different from the values calculated using the Malaysian food-consumption statistics (average of 0.313 and 0.676 pg TEQ kg(-1) body weight day(-1) for PCDD/Fs and PCBs, respectively). However, both of the dietary exposure estimations were lower than the tolerable daily intake recommended by WHO. Thus, it is suggested that seafood from Malaysia does not pose a notable risk to the health of the average consumer.
  2. Murakami M, Adachi N, Saha M, Morita C, Takada H
    Arch Environ Contam Toxicol, 2011 Nov;61(4):631-41.
    PMID: 21424221 DOI: 10.1007/s00244-011-9660-4
    Perfluorinated surfactants (PFSs) in Asian freshwater fish species were analyzed to investigate tissue distribution, temporal trends, extent of pollution, and level of PFS exposure through food intake. Freshwater fish species, namely carp, snakehead, and catfish, were collected in Japan, Vietnam, India, Malaysia, and Thailand, and 10 PFSs, including perfluorooctanesulfonate (PFOS) and perfluorooctanoate, were analyzed by liquid chromatography-tandem mass spectrometry. PFSs in carp in Tokyo were more concentrated in kidneys (Σ10 PFSs = 257 ± 95 ng/g wet weight [ww]) and livers (119 ± 36 ng/g ww) than in ovaries (43 ± 2 ng/g ww) and muscles (24 ± 17 ng/g ww). Concentrations of PFOS and its precursor, perfluorooctane sulfonamide, in livers of carp and in waters in Tokyo showed a dramatic decrease during the last decade, probably because of 3 M's phasing-out of the manufacture of perfluorooctanesulfonyl-fluoride-based products in 2000. In contrast, continuing contamination by long-chain perfluorocarboxylates (PFCAs) with ≥ 9 fluorinated carbons was seen in multiple media, suggesting that these compounds continue to be emitted. PFS concentrations in freshwater fish species in tropical Asian countries were generally lower than those in developed countries, such as Japan, e.g., for PFOS in muscle, Vietnam < 0.05-0.3 ng/g ww; India < 0.05-0.2 ng/g ww; Malaysia < 0.05-0.2 ng/g ww; Thailand < 0.05 ng/g ww; and Japan (Tokyo) = 5.1-22 ng/g ww. Daily intake of short-chain PFCAs with ≤ 8 fluorinated carbons from freshwater fish species in Japan was approximately one order of magnitude lower than that from drinking water, whereas daily intake of PFOS and long-chain PFCAs with ≥ 9 fluorinated carbons from freshwater fish species was comparable with or greater than that from drinking water. Because the risk posed by exposure to these compounds through intake of fish species is a matter of concern, we recommend the continued monitoring of PFS levels in Asian developing countries.
  3. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N
    Arch Environ Contam Toxicol, 2009 Apr;56(3):468-78.
    PMID: 18979060 DOI: 10.1007/s00244-008-9252-0
    The concentrations of butyltins (BTs) in sediment from Peninsular Malaysia along the Strait of Malacca and their spatial distribution are discussed. The concentrations of BTs were high in the southern part of Peninsular Malaysia where there is a lot of ship traffic, because trade is prosperous. The concentrations of monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) in sediment from the coastal waters of Peninsular Malaysia were in the range 4.1-242 microg/kg dry weight (dw), 1.1-186 microg/kg dw, and 0.7-228 microg/kg dw, respectively. A higher percentage of TBT was observed in the area where TBT concentrations were high. The concentrations of monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were in the range <0.1-121 microg/kg dw, 0.4-27 microg/kg dw, and 0.1-34 microg/kg dw in sediment from Peninsular Malaysia, respectively. MPT was the dominant phenyltin species. MBT, DBT, and TBT in green mussel (Perna viridis) samples were detected in the range 41-102 microg/kg, 3-5 microg/kg, and 8-32 microg/kg, respectively. A tolerable average residue level (TARL) was estimated at 20.4 microg/kg from a tolerable daily intake (TDI) of 0.25 microg TBTO/kg body weight/day. The maximum value of TBT detected in green mussel samples was the value near the TARL. TPTs were not detected in green mussel samples. The concentrations of Diuron and Irgarol 1051 in sediment from Peninsular Malaysia were in the range <0.1-5 microg/kg dw and <0.1-14 microg/kg dw, respectively. High concentrations of these compounds were observed in locations where the concentrations of TBT were high. Sea Nine 211, Dichlofluanid, and Pyrithiones were not detected in sediment. The concentrations of antifouling biocides in Melaka and the Strait of Johor were investigated in detail. BTs were found in similar concentrations among all sampling sites from Melaka, indicating that BT contamination spread off the coast. However, Sea Nine 211, Diuron, and Irgarol 1051 in the sediment from Melaka were high at the mouth of the river. BT concentrations at the Strait of Johor were higher than those in Peninsular Malaysia and Melaka and were high at the narrowest locations with poor flushing of water. The concentrations of antifouling biocides were compared among Malaysia, Thailand, and Vietnam. A higher concentration and wide variations of TBT and TPT in sediment from Malaysia were observed among these countries. The Irgarol 1051 concentrations in sediment from Malaysia were higher than those in Thailand and Vietnam.
  4. Sudaryanto A, Kunisue T, Tanabe S, Niida M, Hashim H
    Arch Environ Contam Toxicol, 2005 Oct;49(3):429-37.
    PMID: 16132420
    This study determined the concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides, and tris(4-chlorophenyl) methane (TCPMe) in human breast milk samples collected in 2003 from primipara mothers living in Penang, Malaysia. OCs were detected in all the samples analyzed with DDTs, hexachlorocyclohexane isomers (HCHs), and PCBs as the major contaminants followed by chlordane compounds (CHLs), hexachlorobenzene (HCB), and TCPMe. The residue levels of DDTs, HCHs, and CHLs were comparable to or higher than those in general populations of other countries, whereas PCBs and HCB were relatively low. In addition, dioxins and related compounds were also detected with a range of dioxin equivalent concentrations from 3.4 to 24 pg-TEQs/g lipid wt. Levels of toxic equivalents (TEQs) were slightly higher than those in other developing countries but still much lower than those of industrialized nations. One donor mother contained a high TEQs level, equal to the mean value in human breast milk from Japan, implying that some of the residents in Malaysia may be exposed to specific pollution sources of dioxins and related compounds. No association was observed between OCs concentrations and maternal characteristics, which might be related to a limited number of samples, narrow range of age of the donor mothers, and/or other external factors. The recently identified endocrine disrupter, TCPMe, was also detected in all human breast milk samples of this study. A significant positive correlation was observed between TCPMe and DDTs, suggesting that technical DDT might be a source of TCPMe in Malaysia. The present study provides a useful baseline for future studies on the accumulations of OCs in the general population of Malaysia.
  5. Thinh DD, Rasid MH, Deris ZM, Shazili NA, De Boeck G, Wong LL
    Arch Environ Contam Toxicol, 2016 Nov;71(4):530-540.
    PMID: 27638714
    To assess stress level induced by multiple stressors in aquatic organism, biomarkers have been adopted as early warning indicator due to their high accuracy, rapidity, and sensitivity. We investigated the effects of ectoparasitic isopod infection on heavy metal bioaccumulation (Fe, Cu, Zn, and Cd) in the fish Nemipterus furcosus and profiled the expression of metallothionein (MT) and heat shock proteins 70 (HSP70) genes of the fish host. Sixty individuals (parasitized and nonparasitized with Cymothoa truncata) were collected from three sites differing in the levels of anthropogenic activities off the South China Sea. Our results revealed no significant difference in heavy metal concentrations between infected and nonparasitized fish. We observed a positive correlation between heavy metal bioaccumulation in the fish host and anthropogenic activities. Accordingly, expression analysis of MT genes in fish liver showed significant differences in expression level between sampling sites, with lowest level in the least exploited site (Batu Rakit). A reverse pattern in HSP70 gene expression was demonstrated in fish muscle, showing the highest expression at Batu Rakit. While cymothoid infection in N. furcosus had no significant impact on fish MT gene expression, it resulted in a reduction of HSP70 level in liver of parasitized fish. These findings highlight the putative roles of MT in heavy metal assessment. Future studies should determine the kinetics of cymothoid infection and other potential stressors in characterizing the HSP70 gene expression profile.
  6. Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, et al.
    Arch Environ Contam Toxicol, 2017 Aug;73(2):230-239.
    PMID: 28534067 DOI: 10.1007/s00244-017-0414-9
    Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.
  7. Keshavarzifard M, Zakaria MP, Sharifi R
    Arch Environ Contam Toxicol, 2017 Oct;73(3):474-487.
    PMID: 28497299 DOI: 10.1007/s00244-017-0410-0
    The distribution, sources, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediment and the edible tissue of short-neck clam (Paphia undulata) from mudflat ecosystem in the west coast of Malaysia were investigated. The concentrations of ∑16 PAHs varied from 347.05 to 6207.5 and 179.32 to 1657.5 ng g-1 in sediment and short-neck clam samples, respectively. The calculations of mean PEL quotients (mean-PELQs) showed that the ecological risk of PAHs in the sediment samples was low to moderate-high level, whereas the total health risk through ingestion and dermal contact was considerably high. The PAHs biota sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. The source apportionment of PAHs in sediment using positive matrix factorization model indicated that the highest contribution to the PAHs was from diesel emissions (30.38%) followed by oil and oil derivate and incomplete coal combustion (23.06%), vehicular emissions (16.43%), wood combustion (15.93%), and natural gas combustion (14.2%). A preliminary evaluation of human health risk using chronic daily intake, hazard index, benzo[a]pyrene-equivalent (BaPeq) concentration, and the incremental lifetime cancer risk indicated that PAHs in short-neck clam would induce potential carcinogenic effects in the consumers.
  8. Praveena SM
    Arch Environ Contam Toxicol, 2018 Oct;75(3):415-423.
    PMID: 29802419 DOI: 10.1007/s00244-018-0537-7
    This study was designed to determine the particle size distribution and develop road dust index combining source and transport factors involving road dust for dust pollution quantification in Rawang. Principal component analysis (PCA) was applied to identify possible sources of potentially toxic elements and spot major pollution areas in Rawang. The health risks (carcinogenic and noncarcinogenic) to adults and children were assessed using the hazard index and total lifetime cancer Risk, respectively. A total of 75 road dust samples were collected and particle sizes (1000, 500, 250, 160, 125 and 63 µm) were determined. Concentrations of potentially toxic elements (Cu, Cd, Co, Cr, Pb, Ni, Zn and As) in particle size of 63 µm were analyzed. The results demonstrated that the highest grain size of 250 µm has contributed almost more than 25% of atmospheric particulate pollution. The highest potentially toxic element concentration was Pb (593.3 mg/kg), whereas the lowest was Co (5.6 mg/kg). Road dust index output indicated that pollution risk fell into moderate levels in eastern and northern areas of Rawang. Similarly, PCA results revealed that potentially toxic elements (Cu, Cd, Pb, Zn, Ni and Cr) were linked with anthropogenic sources (urbanization process, industrial and commercial growth, urban traffic congestion) in northern and southern parts of Rawang. Cobalt and As concentrations were explained mainly from natural sources. Noncarcinogenic risk by hazard index value more than 1.0 was indicated for adults and children. Similarly, carcinogenic risk by total lifetime cancer risk value also showed carcinogenic risks among adults and children.
  9. Razak HA, Wahid NBA, Latif MT
    Arch Environ Contam Toxicol, 2019 Nov;77(4):587-593.
    PMID: 31359072 DOI: 10.1007/s00244-019-00656-3
    Anionic surfactants are one of the pollutants derived from particulate matter (PM) and adversely affect the health of living organisms. In this study, the compositions of surfactants extracted from PM and vehicle soot collected in an urban area were investigated. A high-volume air sampler was used to collect PM sample at urban area based on coarse (> 1.5 µm) and fine (
  10. Malik A, Ashraf MAB, Khan MW, Zahid A, Shafique H, Waquar S, et al.
    Arch Environ Contam Toxicol, 2020 Apr;78(3):329-336.
    PMID: 31620805 DOI: 10.1007/s00244-019-00673-2
    The use of leaded gasoline adversely affects cardiovascular, nervous, and immune systems. Study projects to rule out different variables of prognostic importance in lead-exposed subjects. A total of 317 traffic wardens with 5 years of outdoor experience and Hb levels
  11. Chandrasekar T, Keesari T, Gopalakrishnan G, Karuppannan S, Senapathi V, Sabarathinam C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):183-207.
    PMID: 33392777 DOI: 10.1007/s00244-020-00803-1
    Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co. Ba was the dominant element that ranged from 441 to 42,638 μg/l in hard rock aquifers, whereas Zn was the major element in sedimentary formations, with concentrations that ranged from 44 to 118,281 μg/l. The concentrations of Fe, Ni, Cr, Al, Cr, and Ni fell above the permissible limit in both of the formations. However, the calculated heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and the degree of contamination (Cd) parameters were higher in the sedimentary formation along the contact zone of the K/T boundary. Excessive health risks from consumption of contaminated groundwater were mostly confined to populations in the northern and southwestern regions of the study area. Carcinogenic risk assessment suggests that there are elevated risks of cancer due to prolonged consumption of untreated groundwater. Ba, Sr, and Zn were found to be geochemically highly mobile due to the partitioning between the rock matrix and groundwater, aided by the formation of soluble carbonato-complexes. Factor analysis indicates that the metals are mainly derived from the host rocks and anthropogenic inputs are relatively insignificant. Overall, this study indicated that groundwater in K/T contact zones is vulnerable to contamination because of the favorable geochemical factors. Long-term monitoring of such contact zones is required to avert the potential health hazards associated with consumption of the contaminated groundwater.
  12. Adithya VSP, Chidambaram S, Prasanna MV, Venkatramanan S, Tirumalesh K, Thivya C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):308-318.
    PMID: 33398396 DOI: 10.1007/s00244-020-00798-9
    The presence of radioactive elements in groundwater results in high health risks on surrounding populations. Hence, a study was conducted in central Tamil Nadu, South India, to measure the radon levels in groundwater and determine the associated health risk. The study was conducted along the lithological contact of hard rock and sedimentary formation. The concentrations of uranium (U) varied from 0.28 to 84.65 µg/L, and the radioactivity of radon (Rn) varied from 258 to 7072 Bq/m3 in the collected groundwater samples. The spatial distribution of Rn in the study area showed that higher values were identified along the central and northern regions of the study area. The data also indicate that granitic and gneissic rocks are the major contributors to Rn in groundwater through U-enriched lithological zones. The radon levels in all samples were below the maximum concentration level, prescribed by Environmental Protection Agency. The effective dose levels for ingestion and inhalation were calculated according to parameters introduced by UNSCEAR and were found to be lesser (0.235-6.453 μSvy-1) than the recommended limit. Hence, the regional groundwater in the study area does not pose any health risks to consumers. The spatial distribution of Rn's effective dose level indicates the higher values were mainly in the central and northern portion of the study area consist of gneissic, quarzitic, and granitic rocks. The present study showed that Rn concentrations in groundwater depend on the lithology, structural attributes, the existence of uranium minerals in rocks, and the redox conditions. The results of this study provide information on the spatial distribution of Rn in the groundwater and its potential health risk in central Tamil Nadu, India. It is anticipated that these data will help policymakers to develop plans for management of drinking water resources in the region.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links