Displaying all 7 publications

Abstract:
Sort:
  1. Sambanthamurthi R, Rajanaidu N, Hasnah Parman S
    Biochem Soc Trans, 2000 Dec;28(6):769-70.
    PMID: 11171201
    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value.
  2. Yip CH, Ghazali AK, Nathan S
    Biochem Soc Trans, 2020 04 29;48(2):569-579.
    PMID: 32167134 DOI: 10.1042/BST20190836
    Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease of the tropics with high clinical mortality rates. To date, no vaccines are approved for melioidosis and current treatment relies on antibiotics. Conversely, common misdiagnosis and high pathogenicity of Bp hamper efforts to fight melioidosis. This bacterium can be isolated from a wide range of niches such as waterlogged fields, stagnant water bodies, salt water bodies and from human and animal clinical specimens. Although extensive studies have been undertaken to elucidate pathogenesis mechanisms of Bp, little is known about how a harmless soil bacterium adapts to different environmental conditions, in particular, the shift to a human host to become a highly virulent pathogen. The bacterium has a large genome encoding an armory of factors that assist the pathogen in surviving under stressful conditions and assuming its role as a deadly intracellular pathogen. This review presents an overview of what is currently known about how the pathogen adapts to different environments. With in-depth understanding of Bp adaptation and survival, more effective therapies for melioidosis can be developed by targeting related genes or proteins that play a major role in the bacteria's survival.
  3. Hiu JJ, Yap MKK
    Biochem Soc Trans, 2020 04 29;48(2):719-731.
    PMID: 32267491 DOI: 10.1042/BST20200110
    The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
  4. Ramli US, Baker DS, Quant PA, Harwood JL
    Biochem Soc Trans, 2002 Nov;30(Pt 6):1043-6.
    PMID: 12440968
    Control analysis is a powerful method to quantify the regulation of metabolic pathways. We have applied it to lipid biosynthesis for the first time by using model tissue culture systems from the important oil crops, olive ( Olea europaea L.) and oil palm ( Elaeis guineensis Jacq.). By the use of top-down control analysis, fatty acid biosynthesis has been shown to exert more control than lipid assembly under different experimental conditions. However, both parts of the lipid biosynthetic pathway are important, so that attempts to alter oil yield by manipulating the activity of a single enzyme step are very unlikely to produce significant increases.
  5. Parveez GK, Masri MM, Zainal A, Majid NA, Yunus AM, Fadilah HH, et al.
    Biochem Soc Trans, 2000 Dec;28(6):969-72.
    PMID: 11171275
    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.
  6. Murphy NP, Binti Ahmad Mokhtar AM, Mott HR, Owen D
    Biochem Soc Trans, 2021 06 30;49(3):1425-1442.
    PMID: 34196668 DOI: 10.1042/BST20200557
    Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links