Displaying all 3 publications

Abstract:
Sort:
  1. Singh S, Muralidharan AK, Radhakrishnan J, Zuber M, Basri AA, Mazlan N, et al.
    Biomimetics (Basel), 2022 Nov 21;7(4).
    PMID: 36412736 DOI: 10.3390/biomimetics7040208
    Insect RoboFlyers are interesting and active focuses of study but producing high-quality flapping robots that replicate insect flight is challenging., due to the dual requirement of both a sophisticated transmission mechanism with light weight and minimal intervening connections. This innovative mechanism was created to address the need for a producible structure that is small in size, small in mass, and has reduced design linkages. The proposed Single Crank-Slotted Dual Lever (SC-SDL) mechanism transforms rotational motion into specific angular motion at different velocities for each of its two strokes, i.e., the forward stroke and the return stroke. The discovery of a lag between the left and right lever motions in our design mechanism-I leads us to the conclusion that the flapping is asymmetric. To eliminate the position lag, the design has been altered, and a new design mechanism-II has been developed. Comparative kinematic analysis of both design systems is performed using simulations. Two-dimensional analysis of the base ornithopter configuration using ANSYS FLUENT yielded deeper insights regarding the influence of varying flapping frequency on critical flow metrics regarding adequate lift and thrust. For a flapping frequency of 24 Hz, adequate lift generation was achieved with minimal flow disturbances and wake interactions. Averaged dual wing estimations were made as part of the CFD study, which showed similar agreements. To validate the estimations, experimental tests were performed over the design mechanism-II configuration.
  2. Al Shouny A, Rezk H, Sayed ET, Abdelkareem MA, Issa UH, Miky Y, et al.
    Biomimetics (Basel), 2023 Nov 20;8(7).
    PMID: 37999197 DOI: 10.3390/biomimetics8070557
    Direct methanol fuel cells (DMFCs) are promising form of energy conversion technology that have the potential to take the role of lithium-ion batteries in portable electronics and electric cars. To increase the efficiency of DMFCs, many operating conditions ought to be optimized. Developing a reliable fuzzy model to simulate DMFCs is a major objective. To increase the power output of a DMFC, three process variables are considered: temperature, methanol concentration, and oxygen flow rate. First, a fuzzy model of the DMFC was developed using experimental data. The best operational circumstances to increase power density were then determined using the beetle antennae search (BAS) method. The RMSE values for the fuzzy DMFC model are 0.1982 and 1.5460 for the training and testing data. For training and testing, the coefficient of determination (R2) values were 0.9977 and 0.89, respectively. Thanks to fuzzy logic, the RMSE was reduced by 88% compared to ANOVA. It decreased from 7.29 (using ANOVA) to 0.8628 (using fuzzy). The fuzzy model's low RMSE and high R2 values show that the modeling phase was successful. In comparison with the measured data and RSM, the combination of fuzzy modeling and the BAS algorithm increased the power density of the DMFC by 8.88% and 7.5%, respectively, and 75 °C, 1.2 M, and 400 mL/min were the ideal values for temperature, methanol concentration, and oxygen flow rate, respectively.
  3. Glazov IE, Krut'ko VK, Safronova TV, Sazhnev NA, Kil'deeva NR, Vlasov RA, et al.
    Biomimetics (Basel), 2023 Jul 09;8(3).
    PMID: 37504185 DOI: 10.3390/biomimetics8030297
    Biomaterials based on hydroxyapatite with controllable composition and properties are promising in the field of regenerative bone replacement. One approach to regulate the phase composition of the materials is the introduction of biopolymer-based additives into the synthesis process. The purpose of present study was to investigate the formation of hydroxyapatite-based hybrid materials in the presence of 6-24% platelet-poor plasma (PPP) additive, at a [Ca2+]/[PO43-] ratio of 1.67, pH 11, and varying maturing time from 4 to 9 days. The mineral component of the materials comprised 53% hydroxyapatite/47% amorphous calcium phosphate after 4 days of maturation and 100% hydroxyapatite after 9 days of maturation. Varying the PPP content between 6% and 24% brought about the formation of materials with rather defined contents of amorphous calcium phosphate and biopolymer component and the desired morphology, ranging from typical apatitic conglomerates to hybrid apatite-biopolymer fibers. The co-precipitated hybrid materials based on hydroxyapatite, amorphous calcium phosphate, and PPP additive exhibited increased solubility in SBF solution, which defines their applicability for repairing rhinoplastic defects.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links