Displaying all 3 publications

Abstract:
Sort:
  1. Withanage SP, Hossain MA, Kumar M S, Roslan HA, Abdullah MP, Napis SB, et al.
    Breed Sci, 2015 Jun;65(3):177-91.
    PMID: 26175614 DOI: 10.1270/jsbbs.65.177
    Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3-1.52 ng g(-1) fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants.
  2. Zolkafli SH, Ithnin M, Chan KL, Zainol Abidin MI, Ismail I, Ting NC, et al.
    Breed Sci, 2021 Apr;71(2):253-260.
    PMID: 34377073 DOI: 10.1270/jsbbs.19022
    Oil palm is continually being improved via controlled crossing of selected palms to ensure sustainable yields and productivity. As such, correct parental assignment is important as the presence of illegitimates will compromise the progress of improvement. In the present study, we determined the optimal number of microsatellite (SSR) markers for detection of illegitimates in selected oil palm crosses with high confidence. Determining the optimal number of markers to assign parentage will ensure that the DNA fingerprinting will be cost effective for routine use as a quality control tool in oil palm improvement programs. Here, we evaluated a wide range of crosses that included a cross derived from wild germplasm palm. The results revealed that markers with high PIC are informative and detect most of the alleles present in a cross, including those exhibited by the illegitimates. A larger number of optimum sets of markers are needed to detect all illegitimates for crosses with higher levels of genetic diversity. The optimal number of polymorphic SSR markers determined in the present study can ensure that appropriate quality control is implemented for oil palm improvement programs.
  3. Hossain MK, Jena KK, Bhuiyan MA, Wickneswari R
    Breed Sci, 2016 Sep;66(4):613-626.
    PMID: 27795687
    Sheath blight is considered the most significant disease of rice and causes enormous yield losses over the world. Breeding for resistant varieties is the only viable option to combat the disease efficiently. Seventeen diverged rice genotypes along with 17 QTL-linked SSR markers were evaluated under greenhouse conditions. Pearson's correlation showed only the flag leaf angle had a significant correlation with sheath blight resistance under greenhouse screening. Multivariate analysis based on UPGMA clustering and principal component analysis (PCA) indicated that the flag leaf angle, flag leaf length, and plant compactness were significantly associated with the following SSR marker alleles: RM209 (116,130), RM202 (176), RM224 (126), RM257 (156), RM426 (175), and RM6971 (196), which are linked to the SB QTLs: QRlh11, qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2, and qSB-9. A Mantel test suggested a weak relationship between the observed phenotypes and allelic variation patterns, implying the independent nature of morphological and molecular variations. Teqing and Tetep were found to be the most resistant cultivars. IR65482-4-136-2-2, MR219-4, and MR264 showed improved resistance potentials. These results suggest that the morphological traits and QTLs which have been found to associate with sheath blight resistance are a good choice to enhance resistance through pyramiding either 2 QTLs or QTLs and traits in susceptible rice cultivars.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links