Displaying all 2 publications

Abstract:
Sort:
  1. Elias MH, Azlan H, Baba AA, Ankathil R
    PMID: 29669505 DOI: 10.2174/1871529X18666180419101416
    BACKGROUND: In exploring the cause of Imatinib Mesylate (IM) resistance among Chronic Myeloid Leukemia (CML) patients who do not harbor BCR-ABL dependent mechanism, BCR-ABL independent pathways are the most probable pathways that should be explored. In BCR-ABL independent pathway, SOCS1 plays an important role as it helps in regulating optimal JAK/STAT activity.

    OBJECTIVE: To identify the association of SOCS1 gene hypermethylation in mediating IM Resistance.

    METHOD: The SOCS1 promoter methylation level of 92 BCR-ABL non mutated IM resistant CML patients, 83 IM good response CML patients and 5 normal samples from healthy individuals were measured using Methylation Specific-High Resolution Melt (MS-HRM) analysis.

    RESULTS: Both primers used to amplify promoter region from -333 to -223 and from -332 to -188 showed less than 10% methylation in all CML and normal samples. Consequently, there was no significant difference in SOCS1 promoter methylation level between IM resistant and IM good response patients.

    CONCLUSION: SOCS1 promoter methylation level is not suitable to be used as one of the biomarkers for predicting the possibility of acquiring resistance among CML patients treated with IM.

  2. Mahmoud Ahmed NH, Lai MI
    PMID: 36734897 DOI: 10.2174/1871529X23666230123140926
    β-thalassaemia is a genetic disorder resulting in a reduction or absence of β-globin gene expression. Due to the high prevalence of β-thalassaemia and the lack of available treatment other than blood transfusion and haematopoietic stem cell (HSC) transplantation, the disease represents a considerable burden to clinical and economic systems. Foetal haemoglobin has an appreciated ameliorating effect in β-haemoglobinopathy, as the γ-globin chain substitutes the β-globin chain reduction by pairing with the excess α-globin chain in β-thalassaemia and reduces sickling in sickle cell disease (SCD). BCL11A is a critical regulator and repressor of foetal haemoglobin. Downregulation of BCL11A in adult erythroblasts and cell lines expressing adult haemoglobin led to a significant increase in foetal haemoglobin levels. Disruption of BCL11A erythroid enhancer resulted in disruption of the BCL11A gene solely in the erythroid lineages and increased γ-globin expression in adult erythroid cells. Autologous haematopoietic stem cell gene therapy represents an attractive treatment option to overcome the immune complications and donor availability associated with allogeneic transplantation. Using genome editing technologies, the disruption of BCL11A to induce γ- globin expression in HSCs has emerged as an alternative approach to treat β-thalassaemia. Targeting the +58 BCL11A erythroid enhancer or BCL11A binding motif at the γ-gene promoter with CRISPR-Cas9 or base editors has successfully disrupted the gene and the binding motif with a subsequent increment in HbF levels. This review outlines the critical role of BCL11A in γ-globin gene silencing and discusses the different genome editing approaches to downregulate BCL11A as a means for ameliorating β-thalassaemia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links