Displaying all 11 publications

Abstract:
Sort:
  1. Kim HS, Mukhopadhyay R, Rothbart SB, Silva AC, Vanoosthuyse V, Radovani E, et al.
    Cell Rep, 2014 Mar 13;6(5):892-905.
    PMID: 24565511 DOI: 10.1016/j.celrep.2014.01.029
    Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.
  2. Clarke K, Ricciardi S, Pearson T, Bharudin I, Davidsen PK, Bonomo M, et al.
    Cell Rep, 2017 Nov 07;21(6):1507-1520.
    PMID: 29117557 DOI: 10.1016/j.celrep.2017.10.040
    Regular endurance training improves muscle oxidative capacity and reduces the risk of age-related disorders. Understanding the molecular networks underlying this phenomenon is crucial. Here, by exploiting the power of computational modeling, we show that endurance training induces profound changes in gene regulatory networks linking signaling and selective control of translation to energy metabolism and tissue remodeling. We discovered that knockdown of the mTOR-independent factor Eif6, which we predicted to be a key regulator of this process, affects mitochondrial respiration efficiency, ROS production, and exercise performance. Our work demonstrates the validity of a data-driven approach to understanding muscle homeostasis.
  3. Muñoz-Moreno R, Martínez-Romero C, Blanco-Melo D, Forst CV, Nachbagauer R, Benitez AA, et al.
    Cell Rep, 2019 12 17;29(12):3997-4009.e5.
    PMID: 31851929 DOI: 10.1016/j.celrep.2019.11.070
    Influenza A viruses (IAVs) have a remarkable tropism in their ability to circulate in both mammalian and avian species. The IAV NS1 protein is a multifunctional virulence factor that inhibits the type I interferon host response through a myriad of mechanisms. How NS1 has evolved to enable this remarkable property across species and its specific impact in the overall replication, pathogenicity, and host preference remain unknown. Here we analyze the NS1 evolutionary landscape and host tropism using a barcoded library of recombinant IAVs. Results show a surprisingly great variety of NS1 phenotypes according to their ability to replicate in different hosts. The IAV NS1 genes appear to have taken diverse and random evolutionary pathways within their multiple phylogenetic lineages. In summary, the high evolutionary plasticity of this viral protein underscores the ability of IAVs to adapt to multiple hosts and aids in our understanding of its global prevalence.
  4. Abels ER, Maas SLN, Nieland L, Wei Z, Cheah PS, Tai E, et al.
    Cell Rep, 2019 09 17;28(12):3105-3119.e7.
    PMID: 31533034 DOI: 10.1016/j.celrep.2019.08.036
    Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo-based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression.
  5. Lucero R, Zappulli V, Sammarco A, Murillo OD, Cheah PS, Srinivasan S, et al.
    Cell Rep, 2020 02 18;30(7):2065-2074.e4.
    PMID: 32075753 DOI: 10.1016/j.celrep.2020.01.073
    Glioblastoma (GBM) is characterized by aberrant vascularization and a complex tumor microenvironment. The failure of anti-angiogenic therapies suggests pathways of GBM neovascularization, possibly attributable to glioblastoma stem cells (GSCs) and their interplay with the tumor microenvironment. It has been established that GSC-derived extracellular vesicles (GSC-EVs) and their cargoes are proangiogenic in vitro. To further elucidate EV-mediated mechanisms of neovascularization in vitro, we perform RNA-seq and DNA methylation profiling of human brain endothelial cells exposed to GSC-EVs. To correlate these results to tumors in vivo, we perform histoepigenetic analysis of GBM molecular profiles in the TCGA collection. Remarkably, GSC-EVs and normal vascular growth factors stimulate highly distinct gene regulatory responses that converge on angiogenesis. The response to GSC-EVs shows a footprint of post-transcriptional gene silencing by EV-derived miRNAs. Our results provide insights into targetable angiogenesis pathways in GBM and miRNA candidates for liquid biopsy biomarkers.
  6. Yuniati L, Lauriola A, Gerritsen M, Abreu S, Ni E, Tesoriero C, et al.
    Cell Rep, 2020 05 19;31(7):107664.
    PMID: 32433973 DOI: 10.1016/j.celrep.2020.107664
    Cullin-RING ligases (CRLs) control key cellular processes by promoting ubiquitylation of a multitude of soluble cytosolic and nuclear proteins. Subsets of CRL complexes are recruited and activated locally at cellular membranes; however, few CRL functions and substrates at these distinct cellular compartments are known. Here, we use a proteomic screen to identify proteins that are ubiquitylated at cellular membranes and found that Lunapark, an endoplasmic reticulum (ER)-shaping protein localized to ER three-way junctions, is ubiquitylated by the CRL3KLHL12 ubiquitin ligase. We demonstrate that Lunapark interacts with mechanistic target of rapamycin complex-1 (mTORC1), a central cellular regulator that coordinates growth and metabolism with environmental conditions. We show that mTORC1 binds Lunapark specifically at three-way junctions, and lysosomes, where mTORC1 is activated, make contact with three-way junctions where Lunapark resides. Inhibition of Lunapark ubiquitylation results in neurodevelopmental defects indicating that KLHL12-dependent ubiquitylation of Lunapark is required for normal growth and development.
  7. Khani A, Mustafar F, Rainer G
    Cell Rep, 2018 05 22;23(8):2405-2415.
    PMID: 29791851 DOI: 10.1016/j.celrep.2018.04.076
    Despite well-known privileged perception of dark over light stimuli, it is unknown to what extent this dark dominance is maintained when visual transients occur in rapid succession, for example, during perception of moving stimuli. Here, we address this question using dark and light transients presented at different flicker frequencies. Although both human participants and tree shrews exhibited dark dominance for temporally modulated transients, these occurred at different flicker frequencies, namely, at 11 Hz in humans and 40 Hz and higher in tree shrews. Tree shrew V1 neuronal activity confirmed that differences between light and dark flicker were maximal at 40 Hz, corresponding closely to behavioral findings. These findings suggest large differences in flicker perception between humans and tree shrews, which may be related to the lifestyle of these species. A specialization for detecting dark transients at high temporal frequencies may thus be adaptive for tree shrews, which are particularly fast-moving small mammals.
  8. Meyer K, Feldman HM, Lu T, Drake D, Lim ET, Ling KH, et al.
    Cell Rep, 2019 01 29;26(5):1112-1127.e9.
    PMID: 30699343 DOI: 10.1016/j.celrep.2019.01.023
    The molecular basis of the earliest neuronal changes that lead to Alzheimer's disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD.
  9. Irving AT, Zhang Q, Kong PS, Luko K, Rozario P, Wen M, et al.
    Cell Rep, 2020 11 03;33(5):108345.
    PMID: 33147460 DOI: 10.1016/j.celrep.2020.108345
    Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.
  10. Sargsian S, Chen Z, Lee SC, Robertson A, Thur RS, Sproch J, et al.
    Cell Rep, 2022 Nov 29;41(9):111725.
    PMID: 36450245 DOI: 10.1016/j.celrep.2022.111725
    Soil-transmitted intestinal worms known as helminths colonize over 1.5 billion people worldwide. Although helminth colonization has been associated with altered composition of the gut microbiota, such as increases in Clostridia, individual species have not been isolated and characterized. Here, we isolate and sequence the genome of 13 Clostridia from the Orang Asli, an indigenous population in Malaysia with a high prevalence of helminth infections. Metagenomic analysis of 650 fecal samples from urban and rural Malaysians confirm the prevalence of species corresponding to these isolates and reveal a specific association between Peptostreptococcaceae family members and helminth colonization. Remarkably, Peptostreptococcaceae isolated from the Orang Asli display superior capacity to promote the life cycle of whipworm species, including hatching of eggs from Trichuris muris and Trichuris trichiura. These findings support a model in which helminths select for gut colonization of microbes that support their life cycle.
  11. Zaborowski MP, Lee K, Na YJ, Sammarco A, Zhang X, Iwanicki M, et al.
    Cell Rep, 2019 Apr 02;27(1):255-268.e6.
    PMID: 30943406 DOI: 10.1016/j.celrep.2019.03.003
    Analysis of cancer-derived extracellular vesicles (EVs) in biofluids potentially provides a source of disease biomarkers. At present there is no procedure to systematically identify which antigens should be targeted to differentiate cancer-derived from normal host cell-derived EVs. Here, we propose a computational framework that integrates information about membrane proteins in tumors and normal tissues from databases: UniProt, The Cancer Genome Atlas, the Genotype-Tissue Expression Project, and the Human Protein Atlas. We developed two methods to assess capture of EVs from specific cell types. (1) We used palmitoylated fluorescent protein (palmtdTomato) to label tumor-derived EVs. Beads displaying antibodies of interest were incubated with conditioned medium from palmtdTomato-expressing cells. Bound EVs were quantified using flow cytometry. (2) We also showed that membrane-bound Gaussia luciferase allows the detection of cancer-derived EVs in blood of tumor-bearing animals. Our analytical and validation platform should be applicable to identify antigens on EVs from any tumor type.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links