Nigella sativa is also known for its properties as a traditional herbal healing for many ailments. In this study, the anticancer properties of thyomquinone (TQ), the active ingredient of N. sativa, were studied using ovarian cancer cell line (Caov-3 cells). The anti-proliferative activity of TQ was determined using MTT and the apoptosis was investigated using Flowcytometry and Annexin-V Assays. Multiparameteric cytotoxicity bioassays were used to quantify the changes in cell permeability and mitochondrial membrane potential. Reactive oxygen species (ROS) and apoptosis-involved cell markers were examined to verify cell death mechanism. The MTT-assay showed that TQ induces anti-proliferative activity on Caov-3 with an IC50 of 6.0±0.03 μg/mL, without any cytotoxic activity towards WRL-68 normal hepatocytes. A significant induction of early phase of apoptosis was shown by annexin-V analysis. Treatment of Caov-3 cells with TQ induces decreases in plasma membrane permeability and mitochondrial membrane potential. Visible decrease in the nuclear area was also observed. A significant decrease is observed in Bcl-2 while Bax is down-regulated. TQ-triggered ROS-mediated has found to be associated with Hsp70 dysregulation, an indicator of oxidative injury. We found that TQ induced anti-cancer effect involves intrinsic pathway of apoptosis and cellular oxidative stress. Our results considered collectively indicated that thyomquinone may be a potential agent for ovarian cancer drug development.
Acute myeloid leukemia (AML) is one of the most frequent types of leukemia which mostly affects adult people. Resistance to therapeutic drugs is considered as a major clinical concern resulting in a weaker response to chemotherapy, disease relapse and decreased survival rate. Survivin, a member of Inhibitor of Apoptosis Proteins (IAPs), is associated with drug resistance and inhibition of apoptotic mechanisms in numerous hematological malignancies. In the present study, we examined the combined effect of etoposide and siRNA-mediated silencing of survivin on U-937 acute myeloid leukemia cells. The AML cells were transfected with survivin specific siRNA and gene knockdown was confirmed by quantitative real time PCR and western blotting. Subsequently, U-937 cells were assessed for response to etoposide treatment and apoptosis rate was measured with flowcytometery. The cytotoxic effects in siRNA-etoposide group were measured and compared to etoposide single therapy group. Survivin siRNA effectively knocked down the mRNA and protein levels of survivin, which led to lower cell proliferation and enhanced apoptosis. Furthermore, combined treatment of etoposide and survivin siRNA synergistically increased the cell toxic effects of etoposide and its ability to induce apoptosis.
Neuroinflammation plays a crucial role in expression of symptoms of numerous autoimmune and neurodegenerative diseases such as pain during rheumatoid arthritis. Overproduction of pro-inflammatory cytokines and activation of intracellular signaling pathways have been strongly implicated in the generation of pathological pain states, particularly at central nervous system sites and induction of spinal neuroinflammatory symptoms. The wide ranges of research to define new therapeutic approaches, including neuroimmune-modulators like stem cells are in progress. Mesenchymal stem cells conditioned medium (MSC-CM) has anti-inflammatory factors which can regulate the immune responses. The aim of this study was to investigate the effect of administration of MSC-CM on behavioral, cellular and molecular aspects of adjuvant-induced arthritis in male Wistar rats. Complete Freund's adjuvant (CFA)-induced arthritis (AA) was caused by single subcutaneous injection of CFA into the rat's hind paw on day 0. MSC-CM was administered daily (i.p.) and during the 21 days of the study after injection. Hyperalgesia, Edema, Serum TNF-α levels and p38MAPK and NF-κB activities were assessed on days 0,7,14 and 21 of the study. The results of this study indicated the role of MSC-CM in reducing inflammatory symptoms, serum TNF-α levels and activity of intracellular signaling pathway factors during different phases of inflammation caused by CFA. It seems that MSC-CM treatment due to its direct effects on inhibition of intracellular signaling pathways and pro-inflammatory cytokines can alleviate inflammatory symptoms and pain during CFA-induced arthritis.
Diabetes mellitus is an epidemic that is gaining global concern. Chronic hyperglycemia in diabetes induces the excess production of free radicals. The deleterious effects of excess free radicals are encountered by endogenous antioxidant defense system. Imbalance between free radicals production and antioxidants defense mechanisms leads to a condition known as "oxidative stress". Diabetes mellitus is associated with augmented oxidative stress that induced micro- and macrovascular complications, which presents a significant risk for cardiovascular events. Low vitamin D levels in the body have also been reported to be associated with the pathogenesis of diabetes and enhanced oxidative stress. The article is to review available literature and summarize the relationship between oxidative stress and vitamin D levels in diabetes. We also review the effects of vitamin D analogs supplementation in improving oxidative stress in diabetics.
Phytol (PHY), a chlorophyll-derived diterpenoid, exhibits numerous pharmacological properties, including antioxidant, antimicrobial, and anticancer activities. This study evaluates the anti-diarrheal effect of phytol (PHY) along with its possible mechanism of action through in-vivo and in-silico models. The effect of PHY was investigated on castor oil-induced diarrhea in Swiss mice by using prazosin, propranolol, loperamide, and nifedipine as standards with or without PHY. PHY at 50 mg/kg (p.o.) and all other standards exhibit significant (p < 0.05) anti-diarrheal effect in mice. The effect was prominent in the loperamide and propranolol groups. PHY co-treated with prazosin and propranolol was found to increase in latent periods along with a significant reduction in diarrheal section during the observation period than other individual or combined groups. Furthermore, molecular docking studies also suggested that PHY showed better interactions with the α- and β-adrenergic receptors, especially with α-ADR1a and β-ADR1. In the former case, PHY showed interaction with hydroxyl group of Ser192 at a distance of 2.91Å, while in the latter it showed hydrogen bond interactions with Thr170 and Lys297 with a distance of 2.65 and 2.72Å, respectively. PHY exerted significant anti-diarrheal effect in Swiss mice, possibly through blocking α- and β-adrenergic receptors.
Genetic alterations in the homologous recombination repair (HRR) genes are associated with an increased risk of prostate cancer development, and patients harboring these mutations can benefit from targeted therapy. The main aim of this study is to identify genetic alterations in HRR genes as a potential target for targeted treatment. In this study, targeted next generation sequencing (NGS) is used to analyze mutations in the protein-coding regions of the 27 genes involved in HRR and mutations in hotspots of 5 cancer-associated genes in four FFPE samples and three blood samples from prostate cancer patients. We identified two mutations in TP53 and KRAS. We also identified four conflicting interpretations of pathogenicity variants in BRCA2, STK11 genes and one variant of uncertain significance in the RAD51B gene. In addition, we detected one drug response variant in TP53, and two novel variants in CDK12 and ATM. Our results revealed some actionable pathogenic and potential pathogenic variants that may be associated with response to the Poly (ADP-ribose) polymerase (PARP) inhibitor treatment. More studies in a larger cohort are needed to evaluate and determine the association of HRR mutations with prostate cancer.
Piper betle L. leaves are very popular and traditionally used to chew with betel nut in many Asian countries. In this study, P. betle leaves juice (PBJ) was subjected to evaluation for its antihyperlipidemic activity in the high-fat-diet-induced hyperlipidemic rats model. Swiss albino rats were allowed to high-fat- diet for one month, followed by concurrent administration of PBJ for another month. The rats were then sacrificed and collected blood, tissues and organs. Pharmacokinetic, toxicological studies and molecular docking studies were performed using SwissADME, admetSAR and schrodinger suit-2017. Our investigation showed a promising effect of PBJ on body weight, lipid profile, oxidative and antioxidative enzymes, and the principle enzyme responsible for the synthesis of cholesterol. PBJ at 0.5 - 3.0 mL/rat significantly reduced body weight of hyperlipidemic rats compared to control. PBJ at the doses of 1.0, 1.5, 2.0, and 3.0 mL/rat significantly (p<0.05, p<0.01, p<0.001) improved the levels of TC, LDL-c, TG, HDL-c and VLDL-c. Similarly, PBJ doses starting from 1.0 mL/rat to 3.0 mL/rat reduced the oxidative biomarkers AST, ALT, ALP, and creatinine. The level of HMG-CoA was significantly reduced by PBJ doses 1.5, 2, and 3 ml/rat. A number of compounds have been found to have good pharmacokinetic profile and safety and 4-coumaroylquinic acid exerted the best docking score among them. Thus our findings clearly demonstrated the potential lipid-lowering activities of PBJ both in vivo and in silico studies. PBJ can be a good candidate for the development of antihyperlipidemic medication or as an alternative medicine.
The present study deals with the in-silico analyses of several flavonoid derivatives to explore COVID-19 through pharmacophore modelling, molecular docking, molecular dynamics, drug-likeness, and ADME properties. The initial literature study revealed that many flavonoids, including luteolin, quercetin, kaempferol, and baicalin may be useful against SARS β-coronaviruses, prompting the selection of their potential derivatives to investigate their abilities as inhibitors of COVID-19. The findings were streamlined using in silico molecular docking, which revealed promising energy-binding interactions between all flavonoid derivatives and the targeted protein. Notably, compounds 8, 9, 13, and 15 demonstrated higher potency against the coronavirus Mpro protein (PDB ID 6M2N). Compound 8 has a -7.2 Kcal/mol affinity for the protein and binds to it by hydrogen bonding with Gln192 and π-sulfur bonding with Met-165. Compound 9 exhibited a significant interaction with the main protease, demonstrating an affinity of -7.9 kcal/mol. Gln-192, Glu-189, Pro-168, and His-41 were the principle amino acid residues involved in this interaction. The docking score for compound 13 is -7.5 Kcal/mol, and it binds to the protease enzyme by making interactions with Leu-41, π-sigma, and Gln-189. These interactions include hydrogen bonding and π-sulfur. The major protease and compound 15 were found to bind with a favourable affinity of -6.8 Kcal/mol. This finding was further validated through molecular dynamic simulation for 1ns, analysing parameters such as RMSD, RMSF, and RoG profiles. The RoG values for all four of the compounds varied significantly (35.2-36.4). The results demonstrated the stability of the selected compounds during the simulation. After passing the stability testing, the compounds underwent screening for ADME and drug-likeness properties, fulfilling all the necessary criteria. The findings of the study may support further efforts for the discovery and development of safe drugs to treat COVID-19.
The central dogma of molecular biology was no longer "central" after ground-breaking discoveries conveyed gene expression involves more complex physiological functions in cancer pathogenesis over the last decade. MicroRNAs (miRNAs) are short non-coding RNA that regulate gene expression, affecting key molecular pathways involved in sustaining the proliferative signalling for tumour development, evasion of cellular death, invasion, angiogenesis, as well as metastasis in a plethora of cancer types. MiRNA expression is dysregulated in human cancer through a number of processes, including miRNA gene amplification or deletion, faulty miRNA transcriptional regulation, dysregulated epigenetic alterations, and flaws in the miRNA biogenesis machinery. As a result, the current progress of treatment intervention focuses on modifying the miRNA levels in cancer therapeutics. Nevertheless, the mode of delivery and current management of miRNA therapies remains one of the many questions that need to be addressed. Here, we provided a comprehensive mini-review outlining the role of miRNA in cancer as well as its mode of delivery which includes liposomes, viral vectors, inorganic material-based nanoparticles, and cell-derived membrane vesicles. Likewise, the regulation of miRNA in other diseases and their challenges in translational research was also thoroughly discussed.
In this study, UVA- and UVB-irradiated human fibroblasts were used to investigate the anti-photoaging efficacy of two aqueous extracts from Aspergillus oryzae-fermented broken rice (FBR) and brewers' rice (FBrR). As UVA and UVB can damage the dermal and epidermal layers, respectively, two UV radiation approaches were utilised: i) direct UVA irradiation on fibroblasts, and ii) UVB-irradiated keratinocytes indirectly co-cultured with fibroblasts to observe their epithelial-mesenchymal interaction during UVB-induced photoaging. The anti-photoaging properties were tested utilising biochemical tests and quantitative polymerase chain reaction (qPCR). The treatment of UV-irradiated human fibroblasts with FBR and FBrR dramatically downregulates MMP-1 and SFE gene expression. Nonetheless, MMP-1 secretion was inhibited by FBR and FBrR, with more substantial decreases in UVB-treated co-cultures, ranging from 0.76- to 1.89-fold relative to the untreated control. In UVA-treated fibroblasts, however, the elastase-inhibiting activity of FBR and FBrR is up to 1.63-fold and 2.13-fold more potent, respectively. In addition, post-UV irradiation treatment with FBR and FBrR was able to repair and enhance collagen formation in UVA-irradiated fibroblasts. Both FBR and FBrR were able to upregulate elastin gene expression in fibroblasts under both culture conditions, especially at 50 µg/mL. The pro-inflammatory cytokines TNF-, IL-1ß, and IL-6 were likewise lowered by FBR and FBrR, which may have contributed to the anti-photoaging effect of the UVB-treated co-culture. These results reveal that FBR and FBrR inhibit photoaging in human fibroblasts under both UV induction conditions. In conclusion, FBR and FBrR may be attractive bio-ingredients for usage in the cosmetic sector as cosmeceuticals.
The study was conducted to evaluate the root, shoot and leaf callus cell regeneration and its biochemical properties like antioxidant, carbohydrate, pigment and mineral content from broccoli root, shoot and leaf cutting in vitro. An in vitro factorial experiment was carried out based on a Completely Randomized Design (CRD) with 5 replicates in tissue culture applying different IBA (0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 mg/l) and BAP (1 mg/l) concentrations using broccoli root tip and leaf cutting. The results showed that a higher callus weight was found in the cultured leaf cutting than in root tip cutting in the concentration of 1.0, 1.5 & 2.0 mg/l IBA + 1.0 mg/l BAP combination. The highest callus weight was found in the cultured leaf cutting than root tips cutting at the concentration of 1.5mg/l IBA+1.0 mg/l BAP. Furthermore, the highest inverted sugar and glucose, chlorophyll and nutrient content (K+, NO3- & Ca++), total phenol, flavonoid and total antioxidant were found in the concentration of 1.5mg/l IBA+1.0 mg/l BAP combination in both broccoli leaf and root cutting. The results seemed that it was best to use the combination of the IBA and BAP in the concentration of 1.0-2.0 mg/l and 1mg/l to regenerate root, leaf and callus cell proliferation of broccoli from the root tip and leaf cutting.
Vegetables are rich in vitamins, minerals and dietary fiber that keep a significant role in the functioning of the human body to refrain human health benefits. The experiment was carried out to investigate the effect of different concentrations of IAA on the seedless pod, chlorophyll, vitamin and mineral content of okra as human health benefits. The innovative seed soaking method of application using 0, 25, 50, 100 & 200 mg/l of IAA concentrations was used in okra before germination and cultured in vitro and in vivo. The lower concentrations (25 and 50 mg/l) of IAA significantly increased the pod setting compared to the higher concentration (100 and 200 mg/l). The higher concentration (100 and 200 mg/l) had lower fruit settings than the lower concentration (25 &50) had higher fruit settings. The higher pod size was obtained in the concentration of 100 & 200 mg/l of IAA (34.18 cm²) as compared to the control and other concentrations. In addition, the highest soluble solid content was obtained by 100 and 200 mg/l of IAA concentration as compared to the other concentrations. The maximum vitamin C was found in the concentration of 100 mg/l of IAA as compared to the control and other concentrations. Moreover, higher mineral contents like K, Ca, Mg, Na and Fe were found in 100 & 200 mg/l of IAA. The higher concentrations (100 and 200 mg/l) of IAA greatly increased the seedless okra percentage as compared to the lower concentration. It seemed that 100 and 200 mg/l concentration IAA was a better concentration for mineral content and seedless okra production as compared to the other concentrations.
The search for new treatments for Alzheimer's disease (AD) has led to the exploration of plant-based drugs as potential options. Acetylcholinesterase (AChE) inhibitors are widely used as anti-AD medications. This study aimed to investigate the inhibitory mechanism of girinimbine, a constituent of Murraya koenigii, on AChE. AChE inhibition was assessed by in vitro experiments using the modified Ellman method, as well as in silico molecular docking and molecular dynamic simulation. The results were compared to those of the well-known anti-AChE agents tacrine and propidium iodide. Girinimbine, propidium, and tacrine at concentrations of 3.8X10-5M, 1.1x10-5M, and 6.1x10-7M showed percentages of inhibition percentages of 35.6%, 28.2%, and 76.6%, respectively. The docking and molecular dynamics simulation analyses indicated that girinimbine exhibited a higher binding affinity to AChE compared to propidium and tacrine. This finding was further confirmed by the docking, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of rotation analyses. In conclusion, M. koenigii girinimbine shows promise as an acetylcholinesterase inhibitor for Alzheimer's disease. Further research, including in vivo studies and clinical trials, is needed to explore its potential as a plant-based drug candidate for AD treatment.