Displaying all 2 publications

Abstract:
Sort:
  1. Chong Guan N, Weng Hou S, Abousheishaa AA, Sue Yin L, Sulaiman ARB, Chee Khin K
    Curr Drug Res Rev, 2022 Nov 23.
    PMID: 36420879 DOI: 10.2174/2589977515666221123093522
    BACKGROUND: Individuals with severe mental illness are prone to severe COVID-19 infection with increased morbidity and mortality. Psychiatric patients are often concerned about the potential interactions between the newly approved COVID-19 vaccines in Malaysia and psychotropic drugs like antidepressants. To date, such data are unavailable.

    OBJECTIVES: This review aims to clear the polemics of COVID-19 vaccine-antidepressants interaction in these 3 aspects: (1) cytokines and cytochrome P450 pathway, (2) blood-brain barrier (BBB) involvement and (3) and its interaction with polyethylene glycol (PEG), the potential allergenic culprit following COVID-19 vaccination.

    METHODS: A systemic scoping approach was employed to search for peer-reviewed journal articles across four healthcare and scientific databases (PubMed, MEDLINE, PsycINFO and Cumulative Index to Nursing and Allied Health Literature (CINAHL)).

    RESULTS: Antidepressants metabolism often involve the CYP450 enzymes. Vaccine-antidepressants interactions are probable, likely to be triggered by interactions of CYP450 enzymes and inflammatory cytokines, resulting in diminished drug metabolism and chemical detoxification. Aside, PEG, the excipient in mRNA-based COVID-19 vaccines and antidepressants, has been reported as the anaphylaxis causative allergen. However, whether it leads to a synergistic, potentiation or antagonistic effects when used in combination, remains to be elucidated.

    CONCLUSION: Psychotropic medications, including antidepressants, showed potentially relevant safety risk for COVID-19 patients. These vulnerable patient group must be prioritized for early access to safe and efficacious COVID-19 vaccines, as vaccination remains the most important public health intervention to tackle the ongoing COVID-19 pandemic.

  2. Corrie L, Gulati M, Kaur J, Awasthi A, Vishwas S, Ramanunny AK, et al.
    Curr Drug Res Rev, 2023;15(3):272-285.
    PMID: 36683365 DOI: 10.2174/2589977515666230120140543
    BACKGROUND: Curcumin (CRM) is known to possess various therapeutic properties, such as anti-inflammatory and antidiabetic properties, and is, therefore, considered to be an effective therapeutic.

    OBJECTIVE: A sensitive method for the estimation of CRM in plasma, as well as fecal matter-based solid self-nano emulsifying drug delivery system (S-SNEDDS), has been reported for the first time.

    METHODS: A bioanalytical method was optimized using Box-Behnken Design having 13 runs and 3 responses. The optimized method was developed using methanol and water (70:30 v/v) with a flow rate of 1 mL/min. Quercetin was used as an internal standard. A specificity test was also performed for the developed CRM solid self-nano emulsifying drug delivery system.

    RESULTS: The retention time of CRM was found to be 14.18 minutes. The developed method was validated and found to be linear in the range of 50-250 ng/mL with an R2 of 0.999. Accuracy studies indicated that CRM had a percentage recovery of less than 105% and more than 95%, respectively. Precision studies were carried out for inter, intraday, and inter-analyst precision, and the %RSD was found to be less than 2%. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.37 ng/mL and 10.23 ng/mL, respectively. Stability studies for shortterm, long term and freeze-thaw cycles showed a %RSD of less than 2%, indicating the stability of CRM in the plasma matrix. Moreover, the blank fecal microbiota extract slurry did not show any peak at the retention time of CRM in a CRM-loaded solid nanoemulsifying drug delivery system containing fecal microbiota extract indicating its specificity.

    CONCLUSION: Hence, the developed method can have clinical implications as it helps estimate CRM in blood samples and also provides a simple and sensitive method for the estimation of plant-based flavonoids along with fecal microbiota extract formulations.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links