METHODS: Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining.
RESULTS: Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone.
CONCLUSIONS: MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.
MATERIALS AND METHODS: Two hundred retinal samples of right eye [57.0% females (n = 114) and 43.0% males (n = 86)] were selected from baseline visit. A custom-written software was used for vessel segmentation. Vessel segmentation is the process of transforming two-dimensional color images into binary images (i.e. black and white pixels). The circular area of approximately 2.6 optic disc radii surrounding the center of optic disc was cropped. The non-vessels fragments were removed. FracLac was used to measure the fractal dimension and vessel density of retinal vessels.
RESULTS: This study suggested that 14.1% of the region of interest (i.e. approximately 2.6 optic disk radii) comprised retinal vessel structure. Using correlation analysis, vessel density measurement and fractal dimension estimation are linearly and strongly correlated (R = 0.942, R(2) = 0.89, p
MATERIALS AND METHODS: The tenon tissue was harvested from a patient undergoing strabismus surgery. The human tenon fibroblast cell culture and isolation were performed according to the standard laboratory cell culturing protocol. The cells were divided into three groups: control, treatment with irradiated and non-irradiated riboflavin. There were five different concentrations (0.00156%, 0.003125%, 0.00625%, 0.0125%, 0.025%) in each group of riboflavin. The fibroblasts were treated with riboflavin and the cellular viability was assessed at 24-hour and 48-hour post treatment with MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide colorimetric assay. The absorbance values were analysed using Magellan microplate reader data analysis. A triplicate of readings was taken. The data were presented as mean ± standard deviation of the triplicates. Statistical analysis was performed with Statistical Package for Social Sciences (SPSS) analysis version 23.
RESULTS: Irradiated riboflavin caused a concentration-dependent cell death in human tenon fibroblast cell culture (p