Globally, water pollution from the textile industries is an alarming issue. Malachite Green dye of the triphenylmethane group is an extensively used dye in the fabric industries that is emitted through textile wastewater. This study aimed to isolate and characterize potential Malachite Green (MG) dye degrading bacteria from textile effluents. Different growth and culture parameters such as temperature, pH and dye concentration were optimized to perform the dye-degradation assay using different concentrations of MG dye in the mineral salt medium. A photo-electric-colorimeter was used to measure the decolorizing activity of bacteria at different time intervals after aerobic incubation. Two potential bacterial strains of Enterobacter spp. CV-S1 (accession no: MH450229) and Enterobacter spp. CM-S1 (accession no: MH447289) were isolated from textile effluents exhibiting potential MG dye decoloring efficiency. Further, the RAPD analysis and 16S rRNA sequencing confirmed the genetic differences of the isolated strains. Enterobacter sp CV-S1 and Enterobacter sp CM-S1 can completely decolor MG dye up to 15 mg/L under shaking condition without any requirement of sole carbon source. Thus, these two bacteria have the potency to be utilized in the textile wastewater treatment plant.
As hypercholesterolemia is a primary risk factor for coronary artery disease and stroke, there is now an increasing demand for cholesterol-lowering drugs. Statins are a group of extremely successful drugs that lower the cholesterol level in the blood. Natural statins are produced by fermentation using different species of microorganisms. The overall aim of the present study was to identify statin-producing microfungi, which were isolated from different types of little-explored mangrove and oil palm plantation soils. Isolated fungal cultures were characterized on the basis of morphological, physiological, biochemical, and molecular features. Morphological variability was detected amongst the fungal isolates in regard to colony morphology, conidiophores structures, and conidia coloration. Based on their physiological properties and enzyme assays, rapid differentiation of statin-producing isolates was achieved. Further molecular characterization allowed reliable identification of the selected Penicillium microfungi up to the species level. The identified Penicillium cintrinum ESF2M, Penicillium brefeldianum ESF21P, and Penicillium janthinellum ESF26P strains have a scientific interest as novel wild-type producers of natural statins.
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Tuberculosis (TB) is the world's second-deadliest infectious disease. Despite the availability of drugs to cure TB, control of TB is hampered by the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). The presence of MDR/XDR-TB is alarming due to the low detection rate, high treatment failure, and high mortality. The increasing cases of MDR/XDR-TB are mainly due to the limitations in the diagnostic tests to detect the drug susceptibility of the pathogen, which contribute to the spread of the disease through close contacts. Moreover, inconsistent drug therapy or unsuitable drug regimens could also lead to the subsequent development of drug resistance. The close contacts of an index MDR/XDR-TB patient are at increased risk of developing MDR/XDR-TB. Also, the BCG vaccine may exhibit varying protective effects due to BCG strain diversification, host immune status, exposure to environmental non-tuberculous mycobacteria (NTM), and differences in Mycobacterium tuberculosis (Mtb) subspecies infection, as in the case of sub-optimal protection in the case of Beijing family genotypes of Mtb. This review provides an overview of the current state of drug-resistant tuberculosis (DR-TB) within the context of the global TB pandemic, with a focus on diagnosis, treatment, and the potential impact of BCG vaccination. It highlights the limitations of current approaches and aims to identify opportunities for improving TB control strategies.
A sustainable approach to microbial polyhydroxyalkanoate (PHA) production involves utilizing waste as a substrate, which can include toxic pollutants like phenol as a carbon feedstock. Phenol-contaminated effluents offer cost-effective and readily available resources for PHA production, while simultaneously addressing phenol contamination issues. Understanding the metabolic conversion of phenol to PHA is crucial to enhance its efficiency, especially considering phenol's toxicity to microbial cells and the substrate-dependent nature of microbial PHA production. In this review, the mechanisms of phenol biodegradation and PHA biosynthesis are first independently elucidated to comprehend the role of bacteria in these processes. Phenol can be metabolized aerobically via various pathways, including catechol meta-cleavage I and II, catechol ortho-cleavage, protocatechuate ortho-cleavage, and protocatechuate meta-cleavage, as well as anaerobically via 4-hydrozybenzoate and/or n-caproate formation. Meanwhile, PHA can be synthesized through the acetoacetyl-CoA (pathway I), de novo fatty acids synthesis (pathway II), β-oxidation (pathway III), and the tricarboxylic acid (TCA) cycle, with the induction of these pathways are highly dependent on the substrate. Given that the link between these two mechanisms was not comprehensively reported before, the second part of the review delve into understanding phenol conversion into PHA, specifically polyhydroxybutyrate (PHB). While phenol toxicity can inhibit bacterial performance, it can be alleviated through the utilization of microbial mixed culture (MMC), which offers a wider range of metabolic capabilities. Utilizing phenol as a carbon feedstock for PHB accumulation could offer a viable approach to boost PHA's commercialization while addressing the issue of phenol pollution.