Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Chang CH, Riazi M, Yunus MH, Osman S, Noordin R
    Diagn. Microbiol. Infect. Dis., 2014 Dec;80(4):278-81.
    PMID: 25241641 DOI: 10.1016/j.diagmicrobio.2014.08.012
    This study evaluated 2 rapid leptospirosis serological tests, Leptorapide® (Linnodee, Northern Ireland) and VISITECT®-LEPTO (Omega Diagnostics, Scotland, UK), which are commonly used in Malaysia. A total of 183 samples comprised 113 sera from leptospirosis patients, and 70 sera from other infections and healthy controls were used. The leptospirosis sera were grouped into 2 serum panels, i.e., Group I (MAT+, PCR+) and Group II (MAT+). When inconclusive results were interpreted as positives, both tests showed lower diagnostic sensitivities (≤ 34%) with Group I sera, as compared to Group II sera (Leptorapide®, 93%; VISITECT®-LEPTO, 40%). When inconclusive results were interpreted as negatives, the 2 tests showed ~20% sensitivity with both serum panels. The diagnostic specificity of VISITECT®-LEPTO (94%) was superior to Leptorapide® (69%). Since both tests had misdiagnosed a large proportion of Group I patients and showed many inconclusive results among Group II patients, they have limited diagnostic value in detecting acute leptospirosis.
  2. Ngoi ST, Thong KL
    Diagn. Microbiol. Infect. Dis., 2013 Dec;77(4):304-11.
    PMID: 24139970 DOI: 10.1016/j.diagmicrobio.2013.09.004
    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common causative agent of non-typhoidal salmonellosis in Malaysia. We aimed to characterize S. Enteritidis isolated from humans and animals by analyzing their antimicrobial resistance profiles and genotypes. A total of 111 strains were characterized using multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and antimicrobial susceptibility testing. Both typing methods revealed that genetically similar S. Enteritidis strains had persisted among human and animal populations within the period of study (2003-2008). Only 39% of the strains were multi-drug resistant (i.e., resistant to 3 or more classes of antimicrobial agents), with a majority (73%) of these in low-risk phase (multiple antibiotic resistant index <0.20). Limited genetic diversity among clinical and zoonotic S. Enteritidis suggested that animals are possible sources of human salmonellosis. The degree of multi-drug resistance among the strains was generally low during the study period.
  3. Ong EB, Anthony AA, Ismail A, Ismail A, Lim TS
    Diagn. Microbiol. Infect. Dis., 2013 Sep;77(1):87-9.
    PMID: 23790417 DOI: 10.1016/j.diagmicrobio.2013.05.010
    The hemolysin (HlyE) protein of Salmonella enterica serovar Typhi was reported to be antigenic. This work describes the cloning, expression, and purification of a hexahistidine-tagged HlyE protein under native conditions. Immunoblot analysis and a competitive enzyme-linked immunosorbent assay using sera from typhoid patients showed the presence of HlyE-specific antibodies in circulation.
  4. Chiam CW, Chan YF, Loong SK, Yong SS, Hooi PS, Sam IC
    Diagn. Microbiol. Infect. Dis., 2013 Oct;77(2):133-7.
    PMID: 23886793 DOI: 10.1016/j.diagmicrobio.2013.06.018
    Quantitative real-time polymerase chain reaction (qRT-PCR) is useful for diagnosis and studying virus replication. We developed positive- and negative-strand qRT-PCR assays to detect nsP3 of chikungunya virus (CHIKV), a positive-strand RNA alphavirus that causes epidemic fever, rash, and arthritis. The positive- and negative-strand qRT-PCR assays had limits of quantification of 1 and 3 log10 RNA copies/reaction, respectively. Compared to a published E1 diagnostic assay using 30 laboratory-confirmed clinical samples, the positive-strand nsP3 qRT-PCR assay had higher R(2) and efficiency and detected more positive samples. Peak viral load of 12.9 log(10) RNA copies/mL was reached on day 2 of illness, and RNA was detectable up to day 9, even in the presence of anti-CHIKV IgM. There was no correlation between viral load and persistent arthralgia. The positive-strand nsP3 assay is suitable for diagnosis, while the negative-strand nsP3 assay, which uses tagged primers to increase specificity, is useful for study of active viral replication kinetics.
  5. Lim KT, Hanifah YA, Yusof MY, Goering RV, Thong KL
    Diagn. Microbiol. Infect. Dis., 2012 Oct;74(2):106-12.
    PMID: 22770652 DOI: 10.1016/j.diagmicrobio.2012.05.033
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main bacterial pathogens responsible for nosocomial infections leading to pneumonia, bloodstream, skin, and soft tissue infections. The objective of this study was to investigate the genomic changes of MRSA in a tertiary hospital between the years 2003, 2004, 2007, and 2008. One hundred fifty-four MRSA strains were characterized by multilocus sequence typing (MLST), spa, and mec-associated dru typing. Among the 154 strains, 29 different dru, 15 spa, and 8 MLST types were identified. Seven sequence types (STs) (ST239, ST22, ST5, ST6, ST80, ST573, and ST241) were identified among 2007-08 strains, although only 2 STs (ST239 and ST20) were observed among 2003 strains. Clones ST239-t037-dt13g, ST22-t032-(dt10a and dt10aw), and 28 other MRSA clones being introduced in 2007-2008 have replaced the ST239-t037 (dt13d, 14h, 13i, 13l, 13m, 15m, 15l, and 11al) clones present in 2003. The predominant MLST clone, ST239 (90.3%), was further distinguished into 7 different spa types and 26 different dru types, including 17 novel dru types. Maximum parsimony tree based on dru repeats revealed that 10 dru types (dt11am, dt13j, dt15n, dt13q, dt13n, dt13p, dt13f, dt13ao, dt12j, dt7v) shared the same MLST-spa types with dt13d, suggesting that these MRSA clones might have evolved from ST239-t037-dt13d. In conclusion, our data showed that the ST239-t037-dt13d clone and other MRSA clones in 2003 were replaced by ST239-t037-dt13g and other new emerging spa and dru types.
  6. Baek JY, Kang CI, Kim SH, Ko KS, Chung DR, Peck KR, et al.
    Diagn. Microbiol. Infect. Dis., 2016 Jun;85(2):218-20.
    PMID: 27083121 DOI: 10.1016/j.diagmicrobio.2016.02.022
    Tedizolid phosphate is a second-generation oxazolidinone prodrug that is potential activity against a wide range of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, penicillin-resistant streptococci, and vancomycin-resistant enterococci. The in vitro activity of tedizolid and other comparator agents against multidrug-resistant (MDR) pneumococci from various Asian countries were evaluated. Of the S. pneumoniae clinical pneumonia isolates collected during 2008 and 2009 from 8 Asian countries (Korea, Taiwan, Thailand, Hong Kong, Vietnam, Malaysia, Philippines, and Sri Lanka), 104 isolates of MDR pneumococci were included in this study. Antimicrobial susceptibility testing for 18 antimicrobial agents was performed by broth microdilution method. Tedizolid was highly active against pneumococci. All isolates tested were inhibited at a tedizolid minimum inhibitory concentration (MIC) value of ≤0.25μg/ml (ranged from ≤0.03μg/ml to 0.25μg/ml). The MIC50 and MIC90 of tedizolid against MDR pneumococci were both 0.12μg/ml, while MIC50 and MIC90 of linezolid were 0.5μg/ml and 1μg/ml, respectively. In addition, tedizolid maintained the activity against S. pneumoniae regardless of the extensively drug-resistant (XDR) phenotype of the isolates. The activity of tedizolid was excellent against all types of MDR pneumococci, exhibiting and maintaining at least 4-fold-greater potency compared to linezolid, regardless of resistance phenotypes to other commonly utilized agents. Tedizolid has the potential to be an agent to treat infections caused by MDR pneumococci in the Asia.
  7. Mohamed Zahidi J, Bee Yong T, Hashim R, Mohd Noor A, Hamzah SH, Ahmad N
    Diagn. Microbiol. Infect. Dis., 2015 Apr;81(4):227-33.
    PMID: 25641125 DOI: 10.1016/j.diagmicrobio.2014.12.012
    Molecular approaches have been investigated to overcome difficulties in identification and differentiation of Brucella spp. using conventional phenotypic methods. In this study, high-resolution melt (HRM) analysis was used for rapid identification and differentiation of members of Brucella genus. A total of 41 Brucella spp. isolates from human brucellosis were subjected to HRM analysis using 4 sets of primers, which identified 40 isolates as Brucella melitensis and 1 as Brucella canis. The technique utilized low DNA concentration and was highly reproducible. The assay is shown to be a useful diagnostic tool, which can rapidly differentiate Brucella up to species level.
  8. Than LT, Chong PP, Ng KP, Seow HF
    Diagn. Microbiol. Infect. Dis., 2012 Feb;72(2):196-8.
    PMID: 22154674 DOI: 10.1016/j.diagmicrobio.2011.10.008
    A seminested PCR detecting ten medically important Candida species were achieved. Analytical sensitivity and specificity were not compromised.
  9. Issa R, Mohd Hassan NA, Abdul H, Hashim SH, Seradja VH, Abdul Sani A
    Diagn. Microbiol. Infect. Dis., 2012 Jan;72(1):62-7.
    PMID: 22078904 DOI: 10.1016/j.diagmicrobio.2011.09.021
    A real-time quantitative polymerase chain reaction (qPCR) was developed for detection and discrimination of Mycobacterium tuberculosis (H37Rv and H37Ra) and M. bovis bacillus Calmette-Guérin (BCG) of the Mycobacterium tuberculosis complex (MTBC) from mycobacterial other than tuberculosis (MOTT). It was based on the melting curve (Tm) analysis of the gyrB gene using SYBR(®) Green I detection dye and the LightCycler 1.5 system. The optimal conditions for the assay were 0.25 μmol/L of primers with 3.1 mmol/L of MgCl(2) and 45 cycles of amplification. For M. tuberculosis (H37Rv and H37Ra) and M. bovis BCG of the MTBC, we detected the crossing points (Cp) at cycles of 16.96 ± 0.07, 18.02 ± 0.14, and 18.62 ± 0.09, respectively, while the Tm values were 90.19 ± 0.06 °C, 90.27 ± 0.09 °C, and 89.81 ± 0.04 °C, respectively. The assay was sensitive and rapid with a detection limit of 10 pg of the DNA template within 35 min. In this study, the Tm analysis of the qPCR assay was applied for the detection and discrimination of MTBC from MOTT.
  10. Islam AH, Singh KK, Ismail A
    Diagn. Microbiol. Infect. Dis., 2011 Jan;69(1):38-44.
    PMID: 21146712 DOI: 10.1016/j.diagmicrobio.2010.09.008
    Acinetobacter baumannii is an emerging nosocomial pathogen that is resistant to many types of antibiotics, and hence, a fast, sensitive, specific, and economical test for its rapid diagnosis is needed. Development of such a test requires a specific antigen, and outer membrane proteins (OMPs) are the prime candidates. The goal of this study was to find a specific OMP of A. baumannii and demonstrate the presence of specific IgM, IgA, and IgG against the candidate protein in human serum. OMPs of A. baumannii ATCC 19606 and 16 other clinical isolates of A. baumannii were extracted from an overnight culture grown at 37 °C. Protein profiles were obtained using sodium dodecyl sulfate polyacrylamide gel electrophoresis, and Western blot analysis was performed to detect the presence of IgM, IgA, and IgG against the OMP in host serum. An antigenic 34.4-kDa OMP was uniquely recognized by IgM, IgA, and IgG from patients with A. baumannii infection, and it did not cross-react with sera from patients with other types of infection. The band was also found in the other 16 A. baumannii isolates. This 34.4-kDa OMP is a prime candidate for development of a diagnostic test for the presence of A. baumannii.
  11. Salleh FM, Al-Mekhlafi AM, Nordin A, Yasin 'M, Al-Mekhlafi HM, Moktar N
    Diagn. Microbiol. Infect. Dis., 2011 Jan;69(1):82-5.
    PMID: 21146718 DOI: 10.1016/j.diagmicrobio.2010.08.028
    This study was conducted to evaluate the modification of the usual Gram-chromotrope staining technique developed in-house known as Gram-chromotrope Kinyoun (GCK) in comparison with the Weber Modified Trichrome (WMT) staining technique; as the reference technique. Two hundred and ninety fecal specimens received by the Microbiology Diagnostic Laboratory of Hospital Universiti Kebangsaan Malaysia were examined for the presence of microsporidial spores. The sensitivity and specificity of GCK compared to the reference technique were 98% and 98.3%, respectively. The positive and negative predictive values were 92.5% and 99.6%, respectively. The agreement between the reference technique and the GCK staining technique was statistically significant by Kappa statistics (K = 0.941, P < 0.001). It is concluded that the GCK staining technique has high sensitivity and specificity in the detection of microsporidial spores in fecal specimens. Hence, it is recommended to be used in the diagnosis of intestinal microsporidiosis.
  12. Afzan MY, Sivanandam S, Kumar GS
    Diagn. Microbiol. Infect. Dis., 2010 Oct;68(2):159-62.
    PMID: 20846588 DOI: 10.1016/j.diagmicrobio.2010.06.005
    Trichomonas vaginalis, a flagellate protozoan parasite commonly found in the human genitourinary tract, is transmitted primarily by sexual intercourse. Diagnosis is usually by in vitro culture method and staining with Giemsa stain. There are laboratories that use Gram stain as well. We compared the use of modified Field's (MF), Giemsa, and Gram stains on 2 axenic and xenic isolates of T. vaginalis, respectively. Three smears from every sediment of spun cultures of all 4 isolates were stained, respectively, with each of the stains. We showed that MF staining, apart from being a rapid stain (20 s), confers sharper staining contrast, which differentiates the nucleus and the cytoplasm of the organism when compared to Giemsa and Gram staining especially on parasites from spiked urine samples. The alternative staining procedure offers in a diagnostic setting a rapid stain that can easily visualize the parasite with sharp contrasting characteristics between organelles especially the nucleus and cytoplasm. Vacuoles are more clearly visible in parasites stained with MF than when stained with Giemsa.
  13. Khosravi Y, Tee Tay S, Vadivelu J
    Diagn. Microbiol. Infect. Dis., 2010 Jul;67(3):294-6.
    PMID: 20462725 DOI: 10.1016/j.diagmicrobio.2010.02.010
    Ninety (n = 90) imipenem-resistant Pseudomonas aeruginosa (IRPA) clinical isolates collected randomly during 2005 to 2008 from University Malaya Medical Center were assessed for the presence of different variants of metallo-beta-lactamase (MBL) genes. Polymerase chain reaction (PCR) assay detected 32 (n = 32) MBL gene PCR-positive isolates with the presence of bla(IMP) gene in 14 (n = 14) and bla(VIM) in 18 (n = 18) isolates. Four allelic variants, bla(IMP-7) (12 isolates), bla(IMP-4) (2 isolates), bla(VIM-2) (17 isolates), and bla(VIM-11) (1 isolate), of MBL genes were identified. This study is the first report of detection of bla(IMP-4), bla(VIM-2), and bla(VIM-11) MBL genes from IRPA clinical isolates in Malaysia.

    Study site: University Malaya Medical Center (UMMC)
  14. Sam IC, Kahar-Bador M, Chan YF, Loong SK, Mohd Nor Ghazali F
    Diagn. Microbiol. Infect. Dis., 2008 Dec;62(4):437-9.
    PMID: 18842374 DOI: 10.1016/j.diagmicrobio.2008.07.016
    The 1st 9 clinical isolates of multisensitive community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) from Malaysia carry SCCmec type IV and predominantly cause skin and soft-tissue infections. Seven were classified as nosocomially acquired. There was considerable clonal diversity, with both pandemic and novel multilocus sequence types detected. CA-MRSA rates appear to be increasing in our hospital, warranting close surveillance.
  15. Sabet NS, Subramaniam G, Navaratnam P, Sekaran SD
    Diagn. Microbiol. Infect. Dis., 2006 Sep;56(1):13-8.
    PMID: 16650954
    For rapid identification of methicillin-resistant Staphylococcus aureus, molecular methods are generally targeting mecA and species-specific genes. Sa442 DNA fragment is a popular species-specific target. However, recently, there have been few reports on S. aureus isolates that are negative for Sa442 fragment; therefore, use of single gene or DNA-fragment-specific polymerase chain reaction (PCR) for identification of microbial isolate may result in misidentification. This study includes CoA gene in parallel with Sa442 marker for identification of S. aureus. This further improves the specificity of the assay by checking for 2 determinants simultaneously for the identification of S. aureus and can prevent misidentification of S. aureus isolates lacking Sa442 DNA fragment. In this study, the newly developed triplex real-time PCR assay was compared with a quadruplex conventional gel-based PCR assay using the same primer sets in both assays. The dual-labeled TaqMan probes (ProOligo, France) for these primers were specifically designed and used in a real-time PCR assay. The clinical isolates (n = 152) were subjected to both PCR assays. The results obtained from both assays proved that the primer and probe sets were 100% sensitive and 100% specific for identification of S. aureus and detection of methicillin resistance. This triplex real-time PCR assay represents a rapid and powerful method for S. aureus identification and detection of methicillin resistance.
  16. Francis A, Aiyar S, Yean CY, Naing L, Ravichandran M
    Diagn. Microbiol. Infect. Dis., 2006 Jun;55(2):95-9.
    PMID: 16626918
    Isolation and culture of Burkholderia pseudomallei remains the main stay in the diagnosis of melioidosis. Thus, the search for selective and differential media for B. pseudomallei has been ongoing. A number of such media have been reported with varying efficacy. Ashdown medium is the most established selective medium for the isolation of B. pseudomallei. There are no reports of differential media differentiating B. pseudomallei from Burkholderia cepacia. This report documents such a selective and differentiating medium for B. pseudomallei. Of a total of 1042 clinical specimens containing mixed flora and gram-negative isolates that were tested on this medium, 16 of the specimens yielded B. pseudomallei. The isolation rate was found to be 1.5%. This medium was found to be simple and inexpensive, can be made by small laboratories, and called as Francis medium. Based on the colony morphology and color, a preliminary report can be made within 18-24 h for the presence of B. pseudomallei. Our study showed that this medium had an overall sensitivity of 78.4% with a specificity of 92.2%. The use of this medium as an early diagnostic tool will help to reduce mortality and morbidity of melioidosis patients.
  17. Aziah I, Ravichandran M, Ismail A
    Diagn. Microbiol. Infect. Dis., 2007 Dec;59(4):373-7.
    PMID: 17964105
    Conventional polymerase chain reaction (PCR) testing requires many pipetting steps and has to be transported and stored in cold chain. To overcome these limitations, we designed a ready-to-use PCR test for Salmonella typhi using PCR reagents, primers against the ST50 gene of S. typhi, a built-in internal amplification control (IAC), and gel loading dye mixed and freeze-dried in a single tube. The 2-step dry-reagent-based assay was used to amplify a 1238-bp target gene and an 810-bp IAC gene from 73 BACTEC blood culture broths (33 true positives for S. typhi and 40 true negatives for non-S. typhi). The sensitivity, specificity, positive predictive value, and negative predictive value of the PCR assay were 87.9%, 100%, 100%, and 90.9%, respectively. We suggest that this rapid 2-step PCR test could be used for the rapid diagnosis of typhoid fever.
  18. Lee SH, Chong CE, Lim BS, Chai SJ, Sam KK, Mohamed R, et al.
    Diagn. Microbiol. Infect. Dis., 2007 Jul;58(3):263-70.
    PMID: 17350202
    Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium, which is the etiologic agent of melioidosis, a severe and fatal infectious disease occurring in human and animals. Distinct clinical and animal isolates have been shown to exhibit differences in phenotypic trait such as growth rate, colony morphology, antimicrobial resistance, and virulence. This study was carried out to gain insight into the intrinsic differences between 4 clinical and 6 animal B. pseudomallei isolates from Malaysia. The 16S rRNA-encoding genes from these 10 isolates of B. pseudomallei were sequenced to confirm the identity of these isolates along with the avirulent Burkholderia thailandensis. The nucleotide sequences indicated that the 16S rRNA-encoding genes among the 10 B. pseudomallei isolates were identical to each other. However, the nucleotide sequence differences in the 16S rRNA-encoding genes appeared to be B. pseudomallei and B. thailandensis specific. The growth rate of all B. pseudomallei isolates was determined by generating growth curves at 37 degrees C for 72 h. The isolates were found to differ in growth rates with doubling time varying from 1.5 to 2.3 h. In addition, the B. pseudomallei isolates exhibited considerable variation in colony morphology when grown on Ashdown media, brain-heart infusion agar, and Luria-Bertani agar over 9 days of observation. Antimicrobial susceptibility tests indicated that 80% of the isolates examined were Amp(R) Cb(R) Kn(R) Gm(R) Chl(S) Te(S). Virulence of the B. pseudomallei clinical and animal isolates was evaluated in B. pseudomallei-susceptible BALB/c mice. Most of the clinical isolates were highly virulent. However, virulence did not correlate with isolate origin since 2 of the animal isolates were also highly virulent.
  19. Chenthamarakshan V, Vadivelu J, Puthucheary SD
    Diagn. Microbiol. Infect. Dis., 2001 Jan;39(1):1-7.
    PMID: 11173184
    IgM and IgG based ELISA systems were developed using the culture filtrate antigen (CFA) of Burkholderia pseudomallei. The assays were evaluated using 95 sera from 66 septicemic cases and 47 sera from 20 cases with localized melioidosis. In addition 65 sera from culture negative cases that were also serologically negative for other endemic infections clinically suspected of melioidosis were included. These were compared with sera from 260 non-melioidosis cases, 169 sera from individuals with high risk of acquiring the infection and 48 sera from healthy controls. The IgG-ELISA was 96% sensitive and 94% specific. All sera from cases with septicemic and localized infections and 61 of 63 sera from clinically suspected melioidosis cases were positive for IgG antibody. The geometric mean titre index (GMTI) values of IgG antibody in melioidosis cases were significantly higher (p < 0.0005) compared to that of healthy subjects, high risk group and subjects with non-melioidosis infections. The sensitivity and specificity of IgM ELISA was 74 and 99% respectively. The GMTI value of IgM antibody in the sera of melioidosis cases was significantly higher as compared to that of non-melioidosis disease controls (p < or = 0.001). These results demonstrate that the detection of IgG is a better indicator of the disease in the diagnosis of melioidosis.
  20. Tay ST, Rohani MY, Ho TM, Devi S
    Diagn. Microbiol. Infect. Dis., 2002 Oct;44(2):137-42.
    PMID: 12458119
    In this study, recombinant proteins that encompassed the AD I-AD III regions of 56 kDa immunodominant gene of 2 Orientia tsutsugamushi (OT) serotypes; Gilliam and TA763 were expressed in Escherichia coli. Both recombinant proteins exhibited serologic cross-reactivity with the rabbit antisera against various OT serotypes, as evaluated by enzyme-linked immunosorbent assay (ELISA), but not against other rickettsial species, including Rickettsia typhi, R. prowazekii and TT118 SFG rickettsiae. The feasibility of using the recombinant proteins as a diagnostic reagent was further evaluated by ELISA using sera from blood donors and scrub typhus patients. The results suggested a higher affinity of the antihuman IgM than IgG with both recombinant proteins. The IgM ELISA findings were agreeable with the results of indirect immunoperoxidase (IIP) assay especially with sera of high antibody (1:1600). However, more than one antigen are probably needed for development of an effective assay for serodiagnosis of scrub typhus in endemic areas.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links