Displaying all 4 publications

Abstract:
Sort:
  1. Lo S, Mahmoudi E, Fauzi MB
    Discov Nano, 2023 Aug 22;18(1):104.
    PMID: 37606765 DOI: 10.1186/s11671-023-03880-y
    The skin is known to be the largest organ in the human body, while also being exposed to environmental elements. This indicates that skin is highly susceptible to physical infliction, as well as damage resulting from medical conditions such as obesity and diabetes. The wound management costs in hospitals and clinics are expected to rise globally over the coming years, which provides pressure for more wound healing aids readily available in the market. Recently, nanomaterials have been gaining traction for their potential applications in various fields, including wound healing. Here, we discuss various inorganic nanoparticles such as silver, titanium dioxide, copper oxide, cerium oxide, MXenes, PLGA, PEG, and silica nanoparticles with their respective roles in improving wound healing progression. In addition, organic nanomaterials for wound healing such as collagen, chitosan, curcumin, dendrimers, graphene and its derivative graphene oxide were also further discussed. Various forms of nanoparticle drug delivery systems like nanohydrogels, nanoliposomes, nanofilms, and nanoemulsions were discussed in their function to deliver therapeutic agents to wound sites in a controlled manner.
  2. Zahoor F, Hussin FA, Isyaku UB, Gupta S, Khanday FA, Chattopadhyay A, et al.
    Discov Nano, 2023 Mar 09;18(1):36.
    PMID: 37382679 DOI: 10.1186/s11671-023-03775-y
    The modern-day computing technologies are continuously undergoing a rapid changing landscape; thus, the demands of new memory types are growing that will be fast, energy efficient and durable. The limited scaling capabilities of the conventional memory technologies are pushing the limits of data-intense applications beyond the scope of silicon-based complementary metal oxide semiconductors (CMOS). Resistive random access memory (RRAM) is one of the most suitable emerging memory technologies candidates that have demonstrated potential to replace state-of-the-art integrated electronic devices for advanced computing and digital and analog circuit applications including neuromorphic networks. RRAM has grown in prominence in the recent years due to its simple structure, long retention, high operating speed, ultra-low-power operation capabilities, ability to scale to lower dimensions without affecting the device performance and the possibility of three-dimensional integration for high-density applications. Over the past few years, research has shown RRAM as one of the most suitable candidates for designing efficient, intelligent and secure computing system in the post-CMOS era. In this manuscript, the journey and the device engineering of RRAM with a special focus on the resistive switching mechanism are detailed. This review also focuses on the RRAM based on two-dimensional (2D) materials, as 2D materials offer unique electrical, chemical, mechanical and physical properties owing to their ultrathin, flexible and multilayer structure. Finally, the applications of RRAM in the field of neuromorphic computing are presented.
  3. Shaker LM, Al-Amiery AA, Al-Azzawi WK
    Discov Nano, 2024 Jan 03;19(1):3.
    PMID: 38169021 DOI: 10.1186/s11671-023-03949-8
    This comprehensive review explores the transformative role of nanomaterials in advancing the frontier of hydrogen energy, specifically in the realms of storage, production, and transport. Focusing on key nanomaterials like metallic nanoparticles, metal-organic frameworks, carbon nanotubes, and graphene, the article delves into their unique properties. It scrutinizes the application of nanomaterials in hydrogen storage, elucidating both challenges and advantages. The review meticulously evaluates diverse strategies employed to overcome limitations in traditional storage methods and highlights recent breakthroughs in nanomaterial-centric hydrogen storage. Additionally, the article investigates the utilization of nanomaterials to enhance hydrogen production, emphasizing their role as efficient nanocatalysts in boosting hydrogen fuel cell efficiency. It provides a comprehensive overview of various nanocatalysts and their potential applications in fuel cells. The exploration extends to the realm of hydrogen transport and delivery, specifically in storage tanks and pipelines, offering insights into the nanomaterials investigated for this purpose and recent advancements in the field. In conclusion, the review underscores the immense potential of nanomaterials in propelling the hydrogen energy frontier. It emphasizes the imperative for continued research aimed at optimizing the properties and performance of existing nanomaterials while advocating for the development of novel nanomaterials with superior attributes for hydrogen storage, production, and transport. This article serves as a roadmap, shedding light on the pivotal role nanomaterials can play in advancing the development of clean and sustainable hydrogen energy technologies.
  4. Amir D, Nasaruddin RR, Yousefi M, Mastuli MS, Sulaiman S, Alam MZ, et al.
    Discov Nano, 2024 Feb 22;19(1):32.
    PMID: 38386194 DOI: 10.1186/s11671-024-03974-1
    Activated carbon (AC) is the most common and economically viable adsorbent for eliminating toxic organic pollutants, particularly dyes, from wastewater. Its widespread adoption is due to the simplicity and affordable production of AC, wherein low-cost agricultural wastes, such as durian skin can be used. Converting durian skin into AC presents a promising solution for its solid waste management. However, inherent drawbacks such as its non-selectivity, relatively short lifespan and laborious replacement and recovery processes diminish the overall efficacy of AC as an adsorbent. To address these challenges, the immobilisation of metal nanocatalysts such as silver nanoparticles (AgNPs) is one of the emerging solutions. AgNPs can facilitate the regeneration of the adsorption sites of AC by catalysing the conversion of the adsorbed dyes into harmless and simpler molecules. Nevertheless, the immobilisation of AgNPs on AC surface can be challenging as the pore size formation of AC is hard to control and the nanomaterials can easily leach out from the AC surface. Hence, in this study, we synthesised AC from durian skin (DS) and immobilised AgNPs on the AC-DS surface. Then, we used methylene blue (MB) removal for studying the adsorption capability and recyclability of the AC-DS. In the synthesis of AC-DS, the influences of reaction temperature, activating agent, and acid-washing to its capability in adsorptive removal of  MB in solution were first determined. It was found that 400 °C, KOH activating agent, and the presence of acid-washing (50% of HNO3) resulted in AC-DS with the highest percentage of MB removal (91.49 ± 2.86%). Then, the overall results from three recyclability experiments demonstrate that AC-DS with immobilised AgNPs exhibited higher MB removal after several cycles (up to 6 cycles) as compared to AC-DS alone, proving the benefit of AgNPs for the recyclability of AC-DS. We also found that AgNPs/Citrate@AC-DS exhibited better adsorption capability and recyclability as compared to AgNPs/PVP@AC-DS indicating significant influences of type of stabilisers in this study. This study also demonstrates that the presence of more oxygen-containing functional groups (i.e., carboxyl and hydroxyl functional groups) after acid-washing on AC-DS and in citrate molecules, has greater influence to the performance of AC-DS and AgNPs/Citrate@AC-DS in the removal of MB as compared to the influences of their BET surface area and pore structure. The findings in this study have the potential to promote and serve as a guideline for harnessing the advantages of nanomaterials, such as AgNPs, to enhance the properties of AC for environmental applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links