Urine provides a convenient non-invasive alternative to blood sampling for measurement of certain hormones. Urinary luteinizing hormone (LH) measurements have been used for endocrinology research and anti-doping testing. However, the commercially available LH immunoassays are developed and validated for human blood samples but not urine so that LH assays intended for use with urine samples need thorough validation. Therefore, the present study evaluated the measurement of urinary LH immunoreactivity using previously validated immunofluorometric (IF) and immunochemiluminometric (ICL) LH assays after prolonged frozen storage. LH was measured in serial urine samples following administration of a single injection of one of two doses of recombinant human chorionic hormone (rhCG) with assays run at the end of study (2008) and again after four years of frozen (-20 °C) storage where samples were stored without adding preservatives. The ICL assay showed quantitatively reproducible LH measurements after prolonged -20 °C storage. However, the IF immunoassay gave consistently lower LH levels relative to ICL (2008) with a further proportionate reduction after four years of sample storage (2012). Yet, both the assays displayed similar patterns of the time-course of urine LH measurement both before and after four years of frozen storage. In conclusion, we found that both immunoassays are suitable for urinary LH measurements with ICL assay being more robust for quantitative urinary LH measurement such as for anti-doping purposes, whereas the IF could be applicable for research studies where urine LH levels are compared within-study but not in absolute terms.
In oil palm plantations, the fungicide hexaconazole is used to control Ganoderma infection that threatens to destroy or compromisethe palm. The application of hexaconazole is usually through soil drenching, trunk injection, or a combination of these two methods. It is therefore important to have a method to determine the residual amount of hexaconazole in the field such as in samples of water, soil, and leaf to monitor the use and fate of the fungicide in oil palm plantations. This study on the behaviour of hexaconazole in oil palm agro-environment was carried out at the UKM-MPOB Research Station, Bangi Lama, Selangor. Three experimental plots in this estate with 7-year-old Dura x Pisifera (DxP) palms were selected for the field trial. One plot was sprayed with hexaconazole at the manufacturer's recommended dosage, one at double the recommended dosage, and the third plot was untreated control. Hexaconazole residues in the soil, leaf, and water were determined before and after fungicide treatment. Soil samples were randomly collected from three locations at different depths (0-50 cm) and soil collected fromthe same depth were bulked together. Soil, water, and palm leaf were collected at -1 (day before treatment), 0 (day of treatment), 1, 3, 7, 14, 21, 70, 90, and 120 days after treatment. Hexaconazole was detected in soil and oil palm leaf, but was not detected in water from the nearby stream.
Veterinary and human pharmaceuticals are an emerging category of chemical pollutants with potential to cause serious toxicity to non-target organisms. Filter-feeding aquatic organisms such as mussels are especially threatened. In this study, the blue mussel, Mytilus edulis, was exposed to two doses (0.2 mg/L and 1 mg/L) of the anti-inflammatory diclofenac. Effects on the gill, the principal feeding organ of mussels, were investigated. It was noted that, while no effect was evident on gill glutathione transferase or catalase activities, there was a tissue-specific increase in glutathione reductase activity and reduction in total protein thiol groups. Two dimensional electrophoresis was performed and some affected proteins identified by in-gel tryptic digestion and peptide mass fingerprinting. Of these, four unique proteins (caspase 3/7-4, heat-shock cognate protein 70, a predicted enolase-like protein, arginine kinase) were found to be oxidized whilst eight unique proteins (β-tubulin, actin, isocitrate dehydrogenase, arginine kinase, heavy metal-binding HIP, cytosolic malate dehydrogenase, proteasome subunit alpha type 2, Mg: bb02e05 (glyceraldehyde-3-phosphate dehydrogenase) and superoxide dismutase) were found to have altered abundance. In addition, bioinformatic analysis suggested putative identities for six hypothetical proteins which either were oxidized or decreased in abundance. These were; 78 kDa glucose-regulated protein precursor, α-enolase, calreticulin, mitochondrial H + -ATPase, palmitoyl protein thioesterase 1 and initiation factor 5a. It is concluded that diclofenac causes significant oxidative stress to gills and that this affects key structural, metabolic and stress-response proteins.
Kratom (Mitragyna speciosa) is a psychoactive plant popular in the United States for the self-treatment of pain and opioid addiction. For standardization and quality control of raw and commercial kratom products, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of ten key alkaloids, namely: corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine, mitragynine, mitraphylline, paynantheine, speciociliatine, and speciogynine. Chromatographic separation of diastereomers, or alkaloids sharing same ion transitions, was achieved on an Acquity BEH C18 column with a gradient elution using a mobile phase containing acetonitrile and aqueous ammonium acetate buffer (10mM, pH 3.5). The developed method was linear over a concentration range of 1-200 ng/mL for each alkaloid. The total analysis time per sample was 22.5 minutes. The analytical method was validated for accuracy, precision, robustness, and stability. After successful validation, the method was applied for the quantification of kratom alkaloids in alkaloid-rich fractions, ethanolic extracts, lyophilized teas, and commercial products. Mitragynine (0.7%-38.7% w/w), paynantheine (0.3%-12.8% w/w), speciociliatine (0.4%-12.3% w/w), and speciogynine (0.1%-5.3% w/w) were the major alkaloids in the analyzed kratom products/extracts. Minor kratom alkaloids (corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine) were also quantified (0.01%-2.8% w/w) in the analyzed products; however mitraphylline was below the lower limit of quantification in all analyses.
The lucrative market of herbal remedies spurs rampant adulteration, particularly with pharmaceutical drugs and their unapproved analogues. A comprehensive screening strategy is, therefore, warranted to detect these adulterants and, accordingly, to safeguard public health. This study uses the data-dependent acquisition of liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) to screen phosphodiesterase 5 (PDE5) inhibitors in herbal remedies using suspected-target and non-targeted strategies. For the suspected-target screening, we used a library comprising 95 PDE5 inhibitors. For the non-targeted screening, we adopted top-down and bottom-up approaches to flag novel PDE5 inhibitor analogues based on common fragmentation patterns. LC-QTOF-MS was optimised and validated for capsule and tablet dosage forms using 23 target analytes, selected to represent different groups of PDE5 inhibitors. The method exhibited excellent specificity and linearity with limit of detection and limit of quantification of <40 and 80 ng/mL, respectively. The accuracy ranged from 79.0% to 124.7% with a precision of <14.9% relative standard deviation. The modified, quick, easy, cheap, effective, rugged, and safe extraction provided insignificant matrix effect within -9.1%-8.0% and satisfactory extraction recovery of 71.5%-105.8%. These strategies were used to screen 52 herbal remedy samples that claimed to enhance male sexual performance. The suspected-target screening resulted in 33 positive samples, revealing 10 target analytes and 2 suspected analytes. Systematic MS and tandem MS interrogations using the non-targeted screening returned insignificant signals, indicating the absence of potentially novel analogues. The target analytes were quantified from 0.03 to 121.31 mg per dose of each sample. The proposed strategies ensure that all PDE5 inhibitors are comprehensively screened, providing a useful tool to curb the widespread adulteration of herbal remedies.
The surge in the consumption of food products containing herbal aphrodisiacs has driven their widespread adulteration. A rapid screening strategy is, therefore, warranted to curb this problem. This study established an enzyme inhibition assay to screen phosphodiesterase 5 (PDE5) inhibitors as adulterants in selected food products. Fluorescein-labelled cyclic-3',5'-guanosine monophosphate was utilised as substrates for the PDE5A1 enzyme, aided by the presence of nanoparticle phosphate-binding beads on their fluorescence polarisation. The sample preparation was optimised to improve the enzyme inhibition efficiency and applied to calculate the threshold values of six blank food matrices. The assay was validated using sildenafil, producing an IC50 of 4.2 nM. The applicability of the assay procedure was demonstrated by screening 55 distinct food samples. The results were subsequently verified using confirmatory liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis. Altogether, 49 samples inhibited the PDE5 enzyme above the threshold values (75.7%-105.5%) and were registered as potentially adulterated samples. The remaining six samples were marked as nonadulterated with percentage inhibition below the threshold values (-3.3%-18.2%). The LC-HRMS analysis agreed with the assay results for all food products except for the instant coffee premix (ICP) samples. False-positive results were obtained for the ICP samples at 32% (8/25), due to possible PDE5 inhibition by caffeine. Contrarily, all other food samples were found to produce 0% (0/30) false-positive or false-negative results. The broad-based assay, established via a simple mix-incubate-read format, exhibited promising potential for high-throughput screening of PDE5 inhibitors in various food products, except those with naturally occurring phosphodiesterase inhibitors such as caffeine.
Cypermethrin is a pyrethroid insecticide commonly used to control bagworm infestation in oil palm plantations. It is applied through spraying onto the leaves where the bagworms reside. This article reports the fate of cypermethrin used in a Malaysian oil palm plantation during a typical dry season through the analysis of cypermethrin residue in environmental and palm oil samples collected from a supervised field trial. Residues of cypermethrin were not detected in the soil samples collected at different depths, water samples collected at different points in the experimental plots, and oil samples extracted from fresh fruit bunches (FFB) harvested from each plot for both single and double dosages of treatment throughout the study interval. Analysis of leaf samples, however, revealed that cypermethrin residue was detected for both pesticide treatments up to day 2 after cypermethrin application.
Clandestine heroin laboratories have been a feature of the Malaysian illicit drug scene since soon after the abuse of heroin emerged in 1972. The first few clandestine heroin laboratories which synthesised heroin via the acetylation of imported morphine were uncovered in 1973 and 1977. By the mid-1980s, this type of laboratory was replaced by heroin-cutting laboratories whereby imported high-grade heroin was cut to street heroin. This was to meet the rising demand for the drug owing to the rapid escalation of the number of drug users. Over the years, the most significant change in the composition of the street heroin is the decrease in its purity from 30%-50% to 3%-5%. Caffeine has remained the major adulterant and chloroquine is detected in virtually all recent seizures.
Villocarine A is a bioactive indole alkaloid isolated from the Uncaria genus. It has demonstrated vasorelaxation activity and potential to protect the central nervous system. To identify the pharmacokinetic properties of villocarine A, a series of in vitro and in vivo studies have been performed. Villocarine A was found to be highly permeable (15.6 ± 1.6*10-6 cm/s) across human colorectal adenocarcinoma cell monolayer with high protein binding (>91%) in both rat and human plasma. Hepatic extraction ratio of villocarine A was 0.1 in pooled rat liver and 0.2 in human liver microsomes and was found stable in rat plasma at 37°C. Due to the high permeability and low rate of metabolism properties, villocarine A was initially considered suitable for preclinical development and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification (linearity: 1-150 ng/ml) in rat plasma was developed and validated for in vivo studies. Essential pharmacokinetic parameters included the volume of distribution and clearance of villocarine A, which were found to be 100.3 ± 15.6 L/kg and 8.2 ± 1.1 L/h/kg, respectively, after intravenous administration in rats. Following oral dosing, villocarine A exhibited rapid absorption as the maximum plasma concentration (53.2 ± 10.4 ng/ml) occurred at 0.3 ± 0.1 h, post-dose. The absolute oral bioavailability of villocarine A was 16.8 ± 0.1%. To our knowledge, this was the first pharmacokinetic study of villocarine A, which demonstrated the essential pharmacokinetic properties of villocarine A: large volume distribution, high clearance, and low oral bioavailability in rats.