Methods: A link to the online survey was sent to healthcare professionals (HCPs) in Asia interested in AYA cancer care. Questions covered the demographics and training of HCPs, their understanding of AYA definition, availability and access to specialised AYA services, the support and advice offered during and after treatment, and factors of treatment non-compliance.
Results: We received 268 responses from 22 Asian countries. There was a striking variation in the definition of AYA (median lower age 15 years, median higher age 29 years). The majority of the respondents (78%) did not have access to specialised cancer services and 73% were not aware of any research initiatives for AYA. Over two-thirds (69%) had the option to refer their patients for psychological and/or nutritional support and most advised their patients on a healthy lifestyle. Even so, 46% did not ask about smokeless tobacco habits and only half referred smokers to a smoking cessation service. Furthermore, 29% did not promote human papillomavirus vaccination for girls and 17% did not promote hepatitis B virus vaccination for high-risk individuals. In terms of funding, 69% reported governmental insurance coverage, although 65% reported that patients self-paid, at least partially. Almost half (47%) reported treatment non-compliance or abandonment as an issue, attributed to financial and family problems (72%), loss of follow-up (74%) and seeking of alternative treatments (77%).
Conclusions: Lack of access to and suboptimal delivery of AYA-specialised cancer care services across Asia pose major challenges and require specific interventions.
PATIENTS AND METHODS: A retrospective study was conducted based on incident lung cancer cases diagnosed between 2017 and 2019 in Lampang (Thailand), Penang (Malaysia), Singapore and Yogyakarta (Indonesia). Cases (n = 3413) were defined using the International Classification of Diseases for Oncology third edition. In Singapore, a clinical series obtained from the National Cancer Centre was used to identify patients, while corresponding population-based cancer registries were used elsewhere. Tumor and clinical information were abstracted by chart review according to a predefined study protocol. Molecular testing of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) gene rearrangement, ROS1 gene rearrangement and BRAF V600 mutation was recorded.
RESULTS: Among 2962 cases with a specified pathological diagnosis (86.8%), most patients had non-squamous NSCLC (75.8%). For cases with staging information (92.1%), the majority presented with metastatic disease (71.3%). Overall, molecular testing rates in the 1528 patients with stage IV non-squamous NSCLC were 67.0% for EGFR, 42.3% for ALK, 39.1% for ROS1, 7.8% for BRAF and 36.1% for PD-L1. Among these patients, first-line systemic treatment included chemotherapy (25.9%), targeted therapy (35.6%) and immunotherapy (5.9%), with 31% of patients having no record of antitumor treatment. Molecular testing and the proportion of patients receiving treatment were highly heterogenous between the regions.
CONCLUSIONS: This first analysis of data from a clinically annotated registry for lung cancer from four settings in Southeast Asia has demonstrated the feasibility of integrating clinical data within population-based cancer registries. Our study results identify areas where further development could improve patient access to optimal treatment.
METHODS: The APODDC set up a group of experts in the field of clinical cancer genomics to (i) understand the current NGS landscape for metastatic cancers in the Asia-Pacific (APAC) region; (ii) discuss key challenges in the adoption of NGS testing in clinical practice; and (iii) adapt/modify the European Society for Medical Oncology guidelines for local use. Nine cancer types [breast cancer (BC), gastric cancer (GC), nasopharyngeal cancer (NPC), ovarian cancer (OC), prostate cancer, lung cancer, and colorectal cancer (CRC) as well as cholangiocarcinoma and hepatocellular carcinoma (HCC)] were identified, and the applicability of NGS was evaluated in daily practice and/or clinical research. Asian ethnicity, accessibility of NGS testing, reimbursement, and socioeconomic and local practice characteristics were taken into consideration.
RESULTS: The APODDC recommends NGS testing in metastatic non-small-cell lung cancer (NSCLC). Routine NGS testing is not recommended in metastatic BC, GC, and NPC as well as cholangiocarcinoma and HCC. The group suggested that patients with epithelial OC may be offered germline and/or somatic genetic testing for BReast CAncer gene 1 (BRCA1), BRCA2, and other OC susceptibility genes. Access to poly (ADP-ribose) polymerase inhibitors is required for NGS to be of clinical utility in prostate cancer. Allele-specific PCR or a small-panel multiplex-gene NGS was suggested to identify key alterations in CRC.
CONCLUSION: This document offers practical guidance on the clinical utility of NGS in specific cancer indications from an Asian perspective.