METHODS: Diabetes data were derived from the Malaysian National Health and Morbidity Surveys conducted in 2006, 2011 and 2015. The air pollution data (NOx, NO2, SO2, O3 and PM10) were obtained from the Department of Environment Malaysia. Using multiple logistic and linear regression models, the association between long-term exposure to these pollutants and prevalence of diabetes among Malaysian adults was evaluated.
RESULTS: The PM10 concentration decreased from 2006 to 2014, followed by an increase in 2015. Levels of NOx decreased while O3 increased annually. The air pollutant levels based on individual modelled air pollution exposure as measured by the nearest monitoring station were higher than the annual averages of the five pollutants present in the ambient air. The prevalence of overall diabetes increased from 11.4% in 2006 to 21.2% in 2015. The prevalence of known diabetes, underdiagnosed diabetes, overweight and obesity also increased over these years. There were significant positive effect estimates of known diabetes at 1.125 (95% CI, 1.042, 1.213) for PM10, 1.553 (95% CI, 1.328, 1.816) for O3, 1.271 (95% CI, 1.088, 1.486) for SO2, 1.124 (95% CI, 1.048, 1.207) for NO2, and 1.087 (95% CI, 1.024, 1.153) for NOx for NHMS 2006. The adjusted annual average levels of PM10 [1.187 (95% CI, 1.088, 1.294)], O3 [1.701 (95% CI, 1.387, 2.086)], NO2 [1.120 (95% CI, 1.026, 1.222)] and NOx [1.110 (95% CI, 1.028, 1.199)] increased significantly from NHMS 2006 to NHMS 2011 for overall diabetes. This was followed by a significant decreasing trend from NHMS 2011 to 2015 [0.911 for NO2, and 0.910 for NOx].
CONCLUSION: The findings of this study suggest that long-term exposure to O3 is an important associated factor of underdiagnosed DM risk in Malaysia. PM10, NO2 and NOx may have mixed effect estimates towards the risk of DM, and their roles should be further investigated with other interaction models. Policy and intervention measures should be taken to reduce air pollution in Malaysia.
METHODS: Concentration of Po²¹⁰ was determined in the edible muscle of seafood and water from the coastal area of Kapar, Malaysia using radiochemical separation and the Alpha Spectrometry technique.
RESULTS: The activities of Po²¹⁰ in the dissolved phase of water samples ranged between 0.51 ± 0.21 and 0.71 ± 0.24 mBql⁻¹ whereas the particulate phase registered a range of 50.34 ± 11.40 to 72.07 ± 21.20 Bqkg⁻¹. The ranges of Po²¹⁰ activities in the organism samples were 4.4 ± 0.12 to 6.4 ± 0.95 Bqkg⁻¹ dry wt in fish (Arius maculatus), 45.7 ± 0.86 to 54.4 ± 1.58 Bqkg⁻¹ dry wt in shrimp (Penaeus merguiensis) and 104.3 ± 3.44 to 293.8 ± 10.04 Bqkg⁻¹ dry wt in cockle (Anadara granosa). The variation of Po²¹⁰ in organisms is dependent on the mode of their life style, ambient water concentration and seasonal changes. The concentration factors calculated for fish and molluscs were higher than the recommended values by the IAEA. An assessment of daily intake and received dose due to the consumption of seafood was also carried out and found to be 2083.85 mBqday⁻¹person⁻¹ and 249.30 μSvyr⁻¹ respectively. These values are comparatively higher than reported values in other countries. Moreover, the transformation of Po²¹⁰ in the human body was calculated and revealed that a considerable amount of Po²¹⁰ can be absorbed in the internal organs. The calculated values of life time mortality and morbidity cancer risks were 24.8 × 10⁻⁴ and 34 × 10⁻⁴ respectively which also exceeded the recommended limits set by the ICRP.
CONCLUSIONS: The findings of this present study can be used to evaluate the safety dose uptake level of seafood as well as to monitor environmental health. However, as the calculated dose and cancer risks were found to cross the limit of safety, finding a realistic way to moderate the risk is imperative.