Displaying all 5 publications

Abstract:
Sort:
  1. Ali S, Ullah W, Kamarulzaman AFS, Hassan M, Rauf M, Khattak MNK, et al.
    Fish Shellfish Immunol Rep, 2023 Dec 15;5:100115.
    PMID: 37771818 DOI: 10.1016/j.fsirep.2023.100115
    We report the proteomic profile of Epidermal Mucus (EM) from Labeo rohita and identified the differentially abundant proteins (DAPs) against Aeromonas hydrophila infection through label-free liquid chromatography-mass spectrometry (LC-MS/MS). Using discovery-based proteomics, a total of 2039 proteins were quantified in nontreated group and 1,328 proteins in the treated group, of which 114 were identified as DAPs in both the groups. Of the 114 DAPs, 68 proteins were upregulated and 46 proteins were downregulated in the treated group compared to nontreated group. Functional annotations of these DAPs shows their association with metabolism, cellular process, molecular process, cytoskeletal, stress, and particularly immune system. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Fisher's exact test between the two groups shows that most of the proteins were immune-related, which were significantly associated with the proteasome, phagosome, and Salmonella infection pathways. Overall, this study shows a basic and primary way for further functional research of the involvement of vitellogenin 2, alpha-2-macroglobulin-like protein, toll-like receptors (TLR-13), calpain, keratin-like proteins, and heat shock proteins against bacterial infection. Nonetheless, this first-ever comprehensive report of a proteomic sketch of EM from L. rohita after A. hydrophila infection provides systematic protein information to broadly understand the biological role of fish EM against bacterial infection.
  2. Rashidah AR, Shariff M, Yusoff FM, Ismail IS
    Fish Shellfish Immunol Rep, 2023 Dec 15;5:100118.
    PMID: 37822351 DOI: 10.1016/j.fsirep.2023.100118
    Aquaculture plays a significant role in the overall fish production in Malaysia, contributing a substantial quantity of food-fish amounting to roughly 573,683 tonnes with an estimated economic value of US$860 million in 2022. However, diseases have become a significant limitation for aquaculture production. Therefore, herbal immunostimulant has been considered a natural and practical approach of preventing disease infection in fish. The ability of Polygonum chinense extract (PCE) on haemato-biochemistry parameters, immunomodulatory properties, and disease resistance of Lates calcarifer (Asian seabass) under Vibrio harveyi challenge was evaluated in this study, with a focus on dose-response associations and variability over various exposure durations (0-, 7- and 14-day post-infection). A total of 480 Asian seabass (9.5 ± 0.2 g) were distributed in 12 aquaria and fed four diets supplemented with 0 (control), 2, 5 and 10 g/kg diet for 60 days before being challenged with V. harveyi. Dietary PCE significantly improved (P < 0.05) survival, with the dose of 10 g/kg showing the highest survival rate (90 %) when compared to the control (60 %). Additionally, hematological (red and white blood cell counts, hemoglobulin, packed cell volume, and mean corpuscular volume) and immunological (activities of lysozyme, phagocytic activity and respiratory burst, and serum total immunoglobulin) properties were significantly increased (P < 0.05) in comparison to the control group. In contrast, serum aspartate aminotransferase and alanine aminotransferase levels, as well as glucose level were significantly reduced (P < 0.05) in PCE-fed fish compared to the control group. Conclusively, the current study discovered that supplementing fish feed with P. chinense extract improves fish haemato-biochemical profile, immunocompetence and disease resistance to V. harveyi infection.
  3. Anirudhan A, Iryani MTM, Andriani Y, Sorgeloos P, Tan MP, Wong LL, et al.
    Fish Shellfish Immunol Rep, 2023 Dec;4:100101.
    PMID: 37397801 DOI: 10.1016/j.fsirep.2023.100101
    Pandanus tectorius leaf extract effect on the White-leg shrimp Penaeus vannamei tolerance against Vibrio parahaemolyticus were investigated in this study. Thirty shrimp post-larvae measured at approximately 1 cm were exposed for 24 h to 0.5, 1, 2, 3, 4, 5 and 6 g/L leaf extract and subsequently observed for survival and immune-related genes expression (Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase), followed by determination of their tolerance and histological tissue profiles upon Vibrio challenge. Survival of shrimps treated with 6 g/L of leaf extract improved by up to 95% to controls. Hsp70, crustin, and prophenoloxidase mRNA levels were observed to be 8.5, 10.4, and 1.5-fold higher, respectively. Histopathological analysis of the hepatopancreas and the muscle tissues revealed major tissue degeneration in Vibrio-challenged shrimps but not in shrimps primed with P. tectorius leaf extract. Of all the dose examined, the best pathogen resistance results were obtained with a 24 h incubation of shrimp in 6 g/L P. tectorius methanolic leaf extract. The tolerance towards V. parahaemolyticus might be associated with the increased regulation of Hsp70, prophenoloxidase and crustin upon exposure to the extract, all immune-related proteins essential for pathogen elimination in Penaeid shrimp. The present study primarily demonstrated that P. tectorius leaf extract is a viable alternative for enhancing P. vannamei post-larvae resistance against V. parahaemolyticus, a major bacterial pathogen in aquaculture.
  4. Azemin WA, Ishak NF, Saedin MAA, Shamsir MS, Razali SA
    Fish Shellfish Immunol Rep, 2023 Dec 15;5:100120.
    PMID: 37854946 DOI: 10.1016/j.fsirep.2023.100120
    Drug repurposing is a methodology of identifying new therapeutic use for existing drugs. It is a highly efficient, time and cost-saving strategy that offers an alternative approach to the traditional drug discovery process. Past in-silico studies involving molecular docking have been successful in identifying potential repurposed drugs for the various treatment of diseases including aquaculture diseases. The emerging shrimp hemocyte iridescent virus (SHIV) or Decapod iridescent virus 1 (DIV1) is a viral pathogen that causes severe disease and high mortality (80 %) in farmed shrimps caused serious economic losses and presents a new threat to the shrimp farming industry. Therefore, effective antiviral drugs are critically needed to control DIV1 infections. The aim of this study is to investigate the interaction of potential existing antiviral drugs, Chloroquine, Rimantadine, and CAP-1 with DIV1 major capsid protein (MCP) with the intention of exploring the potential of drug repurposing. The interaction of the DIV1 MCP and three antivirals were characterised and analysed using molecular docking and molecular dynamics simulation. The results showed that CAP-1 is a more promising candidate against DIV1 with the lowest binding energy of -8.46 kcal/mol and is more stable compared to others. We speculate that CAP-1 binding may induce the conformational changes in the DIV1 MCP structure by phosphorylating multiple residues (His123, Tyr162, and Thr395) and ultimately block the viral assembly and maturation of DIV1 MCP. To the best of our knowledge, this is the first report regarding the structural characterisation of DIV1 MCP docked with repurposing drugs.
  5. Ali S, Dawar FU, Ullah W, Hassan M, Ullah K, Zhao Z
    Fish Shellfish Immunol Rep, 2023 Dec 15;5:100122.
    PMID: 38023345 DOI: 10.1016/j.fsirep.2023.100122
    The skin mucus of fish is an important part of the innate immune system, which is poorly understood at the proteomic level. The study established a complete map of the proteins in the skin mucus of Ctenopharangdon idella (C. idella) and discussed the Differentially Expressed Proteins (DEPs) after Aeromonas hydrophila (A. hydrophila) infection. Using Label Free Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis, a total of 126 proteins were identified as differentially expressed, 89 proteins of which were upregulated, and 37 proteins were downregulated. Functional annotations of DEPs showed that the upregulated proteins in the skin mucus of the treated group were mostly associated with complement system and cytoskeleton proteins, whereas downregulated proteins were associated with metabolism. The key upregulated immune proteins were transferrin variant C, lysozyme g, annexin A11, 26S proteasome non-ATPase regulatory subunit 8, hypothetical protein ROHU_000884, 60S ribosomal L7a, calpain-2 catalytic subunit-like protein, calpain-9-like protein, complement component C9, complement C3, cathepsin S, cathepsin Z, 14 kDa apolipo, heat shock protein and intelectin, whereas, leukocyte elastase inhibitor, annexin A11, C-factor-like protein, biotinidase isoform X1 and epidermal growth factor receptor substrate 15-like were the downregulated proteins. Moreover, we for the first-time report proteins such as coactosin, lamin-B2 and kelch 12, which were never reported in fish. Our study directly pointing out the possible immunological biomarkers in the skin mucus of C. idella after A. hydrophila treatment. Each of the protein we report in this study could be used as base to establish their mechanism of action during bacterial infection that may contribute to the strategies against bacterial prevention and control in fishes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links