Displaying all 5 publications

Abstract:
Sort:
  1. Abdul Sani NF, Ahmad Damanhuri MH, Amir Hamzah AIZ, Abu Bakar ZH, Tan JK, Nor Aripin KN, et al.
    Free Radic Res, 2018 Sep;52(9):1000-1009.
    PMID: 30079776 DOI: 10.1080/10715762.2018.1506877
    Ageing is associated with increased oxidative stress accompanied by cognitive decline. The aim of this study was to evaluate oxidative stress biomarkers and their possible relationship with cognitive performances during ageing among the Malay population. Approximately 160 healthy Malay adults aged between 28 and 79 years were recruited around Selangor and Klang Valley. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA), forward digit span (FDS), backward digit span (BDS), digit symbol, Rey Auditory Verbal Learning Test immediate recalled [RAVLT(I)] and delayed recalled [RAVLT(D)], and visual reproduction immediate recalled (VR-I) and delayed recalled (VR-II). DNA damage, plasma protein carbonyl and malondialdehyde (MDA) levels were also determined. Cognitive function test showed significant lower scores of MoCA, BDS, RAVLT(I), RAVLT(D), digit symbol, VR-I, and VR-II in the older age group (60 years old) compared with the 30-, 40-, and 50-year-old group. The extent of DNA damage was sequential with age: 60 > 50 > 40 > 30, whereas protein carbonyl was higher in 40-, 50-, and 60-year-old groups compared with the youngest group (30 years old). However, the MDA level was observed unchanged in all age groups. Approximately 21.88% of the participants had cognitive impairment. Multiple logistic regression analysis revealed that DNA damage and protein carbonyl levels are predictors for cognitive impairment in healthy Malays. In conclusion, cognitive decline occurred in healthy adult Malay population at an early age of 30 years old with corresponding higher DNA damage and protein oxidation.
  2. Ooi TC, Chan KM, Sharif R
    Free Radic Res, 2020 May;54(5):330-340.
    PMID: 32366187 DOI: 10.1080/10715762.2020.1763333
    Zinc L-carnosine (ZnC) is a chelated compound of zinc and L-carnosine. The present study aims to determine the protective effects of ZnC against hydrogen peroxide (H2O2)-induced oxidative stress and genomic damage in CCD-18co human normal colon fibroblast cells. Generally, cells were pretreated with ZnC (0-100 µM) for 24 h before challenged with 20 µM of H2O2 for 1 h to induce oxidative damage. Results showed that pretreatment with ZnC was able to reduce the intracellular ROS level in CCD-18co cells after being challenged with H2O2. Moreover, pretreatment with ZnC demonstrated protection from H2O2-induced DNA strand breaks and micronucleus formation. Our current findings revealed that pretreatment with ZnC could induce the activation of MTF-1 signaling pathway and expression of metallothionein (MT) in a dose-dependent manner. However, ZnC did not have any effects on Nrf2 signaling pathway and the expression of glutathione, superoxide dismutase 1, and glutamate-cysteine ligase catalytic subunit (GCLC). Furthermore, pretreatment with ZnC did not induce the expression of OGG1 and PARP-1 in CCD-18co cells, suggesting that these two DNA repairing enzymes are not related to the genoprotective effects of ZnC. Since the expression of MT has been demonstrated to protect cells from oxidative DNA damage induced by various genotoxic agents, the genoprotective effects of ZnC might be due to the ability of ZnC to induce the expression of MT. In conclusion, ZnC pretreatment was able to protect CCD-18co cells from H2O2-induced genomic damage via the activation of the MTF-1 signalling pathway and the induction of MT expression.
  3. Musthafa QA, Abdul Shukor MF, Ismail NAS, Mohd Ghazi A, Mohd Ali R, M Nor IF, et al.
    Free Radic Res, 2017 Oct;51(9-10):787-798.
    PMID: 28899235 DOI: 10.1080/10715762.2017.1379602
    Identifying patients at risk of developing premature coronary artery disease (PCAD) which occurs at age below 45 years old and constitutes approximately 7-10% of coronary artery disease (CAD) worldwide remains a problem. Oxidative stress has been proposed as a crucial step in the early development of PCAD. This study was conducted to determine the oxidative status of PCAD in comparison to CAD patients. PCAD (<45 years old) and CAD (>60 years old) patients were recruited with age-matched controls (n = 30, each group). DNA damage score, plasma malondialdehyde (MDA) and protein carbonyl content were measured for oxidative damage markers. Antioxidants such as erythrocyte glutathione (GSH), oxidised glutathione (GSSG), and glutathione peroxidase activity (GPx), superoxide dismutase (SOD) and catalase (CAT) were also determined. DNA damage score and protein carbonyl content were significantly higher in both PCAD and CAD when compared to age-matched controls while MDA level was increased only in PCAD (p
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links