Displaying all 4 publications

Abstract:
Sort:
  1. Wu M, Lu Y, Yang W, Wong SY
    Front Comput Neurosci, 2020;14:564015.
    PMID: 33469423 DOI: 10.3389/fncom.2020.564015
    Cardiovascular diseases (CVDs) are the leading cause of death today. The current identification method of the diseases is analyzing the Electrocardiogram (ECG), which is a medical monitoring technology recording cardiac activity. Unfortunately, looking for experts to analyze a large amount of ECG data consumes too many medical resources. Therefore, the method of identifying ECG characteristics based on machine learning has gradually become prevalent. However, there are some drawbacks to these typical methods, requiring manual feature recognition, complex models, and long training time. This paper proposes a robust and efficient 12-layer deep one-dimensional convolutional neural network on classifying the five micro-classes of heartbeat types in the MIT- BIH Arrhythmia database. The five types of heartbeat features are classified, and wavelet self-adaptive threshold denoising method is used in the experiments. Compared with BP neural network, random forest, and other CNN networks, the results show that the model proposed in this paper has better performance in accuracy, sensitivity, robustness, and anti-noise capability. Its accurate classification effectively saves medical resources, which has a positive effect on clinical practice.
  2. Khan A, Khan A, Ullah M, Alam MM, Bangash JI, Suud MM
    Front Comput Neurosci, 2022;16:1001803.
    PMID: 36405784 DOI: 10.3389/fncom.2022.1001803
    Cancer is one of the most prevalent diseases worldwide. The most prevalent condition in women when aberrant cells develop out of control is breast cancer. Breast cancer detection and classification are exceedingly difficult tasks. As a result, several computational techniques, including k-nearest neighbor (KNN), support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), and genetic algorithms, have been applied in the current computing world for the diagnosis and classification of breast cancer. However, each method has its own limitations to how accurately it can be utilized. A novel convolutional neural network (CNN) model based on the Visual Geometry Group network (VGGNet) was also suggested in this study. The 16 layers in the current VGGNet-16 model lead to overfitting on the training and test data. We, thus, propose the VGGNet-12 model for breast cancer classification. The VGGNet-16 model has the problem of overfitting the breast cancer classification dataset. Based on the overfitting issues in the existing model, this research reduced the number of different layers in the VGGNet-16 model to solve the overfitting problem in this model. Because various models of the VGGNet, such as VGGNet-13 and VGGNet-19, were developed, this study proposed a new version of the VGGNet model, that is, the VGGNet-12 model. The performance of this model is checked using the breast cancer dataset, as compared to the CNN and LeNet models. From the simulation result, it can be seen that the proposed VGGNet-12 model enhances the simulation result as compared to the model used in this study. Overall, the experimental findings indicate that the suggested VGGNet-12 model did well in classifying breast cancer in terms of several characteristics.
  3. Amin HU, Mumtaz W, Subhani AR, Saad MNM, Malik AS
    Front Comput Neurosci, 2017;11:103.
    PMID: 29209190 DOI: 10.3389/fncom.2017.00103
    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
  4. Zhao Z, Chuah JH, Lai KW, Chow CO, Gochoo M, Dhanalakshmi S, et al.
    Front Comput Neurosci, 2023;17:1038636.
    PMID: 36814932 DOI: 10.3389/fncom.2023.1038636
    Alzheimer's disease (AD) is a neurodegenerative disorder that causes memory degradation and cognitive function impairment in elderly people. The irreversible and devastating cognitive decline brings large burdens on patients and society. So far, there is no effective treatment that can cure AD, but the process of early-stage AD can slow down. Early and accurate detection is critical for treatment. In recent years, deep-learning-based approaches have achieved great success in Alzheimer's disease diagnosis. The main objective of this paper is to review some popular conventional machine learning methods used for the classification and prediction of AD using Magnetic Resonance Imaging (MRI). The methods reviewed in this paper include support vector machine (SVM), random forest (RF), convolutional neural network (CNN), autoencoder, deep learning, and transformer. This paper also reviews pervasively used feature extractors and different types of input forms of convolutional neural network. At last, this review discusses challenges such as class imbalance and data leakage. It also discusses the trade-offs and suggestions about pre-processing techniques, deep learning, conventional machine learning methods, new techniques, and input type selection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links