Displaying all 2 publications

Abstract:
Sort:
  1. Tuncer I, Barua PD, Dogan S, Baygin M, Tuncer T, Tan RS, et al.
    Inform Med Unlocked, 2023;36:101158.
    PMID: 36618887 DOI: 10.1016/j.imu.2022.101158
    BACKGROUND: Chest computed tomography (CT) has a high sensitivity for detecting COVID-19 lung involvement and is widely used for diagnosis and disease monitoring. We proposed a new image classification model, swin-textural, that combined swin-based patch division with textual feature extraction for automated diagnosis of COVID-19 on chest CT images. The main objective of this work is to evaluate the performance of the swin architecture in feature engineering.

    MATERIAL AND METHOD: We used a public dataset comprising 2167, 1247, and 757 (total 4171) transverse chest CT images belonging to 80, 80, and 50 (total 210) subjects with COVID-19, other non-COVID lung conditions, and normal lung findings. In our model, resized 420 × 420 input images were divided using uniform square patches of incremental dimensions, which yielded ten feature extraction layers. At each layer, local binary pattern and local phase quantization operations extracted textural features from individual patches as well as the undivided input image. Iterative neighborhood component analysis was used to select the most informative set of features to form ten selected feature vectors and also used to select the 11th vector from among the top selected feature vectors with accuracy >97.5%. The downstream kNN classifier calculated 11 prediction vectors. From these, iterative hard majority voting generated another nine voted prediction vectors. Finally, the best result among the twenty was determined using a greedy algorithm.

    RESULTS: Swin-textural attained 98.71% three-class classification accuracy, outperforming published deep learning models trained on the same dataset. The model has linear time complexity.

    CONCLUSIONS: Our handcrafted computationally lightweight swin-textural model can detect COVID-19 accurately on chest CT images with low misclassification rates. The model can be implemented in hospitals for efficient automated screening of COVID-19 on chest CT images. Moreover, findings demonstrate that our presented swin-textural is a self-organized, highly accurate, and lightweight image classification model and is better than the compared deep learning models for this dataset.

  2. Singh R, Rehman AU, Ahmed T, Ahmad K, Mahajan S, Pandit AK, et al.
    Inform Med Unlocked, 2023;38:101235.
    PMID: 37033412 DOI: 10.1016/j.imu.2023.101235
    In this paper, a mathematical model for assessing the impact of COVID-19 on tuberculosis disease is proposed and analysed. There are pieces of evidence that patients with Tuberculosis (TB) have more chances of developing the SARS-CoV-2 infection. The mathematical model is qualitatively and quantitatively analysed by using the theory of stability analysis. The dynamic system shows endemic equilibrium point which is stable when R 0 < 1 and unstable when R 0 > 1 . The global stability of the endemic point is analysed by constructing the Lyapunov function. The dynamic stability also exhibits bifurcation behaviour. The optimal control theory is used to find an optimal solution to the problem in the mathematical model. The sensitivity analysis is performed to clarify the effective parameters which affect the reproduction number the most. Numerical simulation is carried out to assess the effect of various biological parameters in the dynamic of both tuberculosis and COVID-19 classes. Our simulation results show that the COVID-19 and TB infections can be mitigated by controlling the transmission rate γ .
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links