Displaying all 2 publications

Abstract:
Sort:
  1. Poniah P, Mohamed Z, Apalasamy YD, Mohd Zain S, Kuppusamy S, Razack AH
    Int J Clin Exp Med, 2015;8(10):19232-40.
    PMID: 26770559
    Androgens are involved in prostate cancer (PCa) cell growth. Genes involved in androgen metabolism mediate key steps in sex steroid metabolism. This study attempted to investigate whether single nucleotide polymorphisms (SNPs) in the androgen metabolism pathway are associated with PCa risk in low incidence Asian ethnic groups. We genotyped 172 Malaysian subjects for cytochrome P450 family 17 (CYP17A1), steroid-5-alpha-reductase, polypeptide 1 and 2 (SRD5A1 and SRD5A2), and insulin-like growth factor 1 (IGF-1) genes of the androgen metabolism pathway and assessed the testosterone, dihydrotestosterone and IGF-1 levels. SNPs in the CYP17A1, SRD5A1, SRD5A2, and IGF-1 genes were genotyped using real-time polymerase chain reaction. Although we did not find significant association between SNPs analysed in this study with PCa risk, we observed however, significant association between androgen levels and the IGF-1 and several SNPs. Men carrying the GG genotype for SNP rs1004467 (CYP17A1) had significantly elevated testosterone (P = 0.012) and dihydrotestosterone (DHT) levels (P = 0.024) as compared to carriers of the A allele. The rs518673 of the SRD5A1 was associated with prostate specific antigen (PSA) levels. Our findings suggest CYP17A1 rs1004467 SNP is associated with testosterone and DHT levels indicating the importance of this gene in influencing androgen levels in the circulatory system of PCa patients, hence could be used as a potential marker in PCa assessment.
  2. Periayah MH, Halim AS, Saad AZ, Yaacob NS, Hussein AR, Karim FA, et al.
    Int J Clin Exp Med, 2015;8(9):15611-20.
    PMID: 26629055
    Chitosan-derived biomaterials have been reported to adhere when in contact with blood by encouraging platelets to adhere, activate and aggregate at the sites of vascular injury, thus enhanced wound healing capacity. This study investigated platelet morphology changes and the expression level of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-AB (PDGF-AB) in the adherence of two different types of chitosans in von Willebrand disease (vWD): N,O-carboxymethylchitosan (NO-CMC) and oligo-chitosan (O-C). Fourteen vWD voluntary subjects were recruited, and they provided written informed consent. Scanning electron microscopy and enzyme-linked immunosorbent assay test procedures were employed to achieve the objective of the study. The results suggest that the O-C group showed dramatic changes in the platelet's behaviors. Platelets extended filopodia and generated lamellipodia, leading to the formation of grape-like shaped aggregation. The platelet aggregation occurred depending on the severity of vWD. O-C was bound to platelets on approximately 90% of the surface membrane in vWD type 1; there was 70% and 50% coverage in vWD type II and III, respectively. The O-C chitosan group showed an elevated expression level of TGF-β1 and PDGF-AB. This finding suggests that O-C stimulates these mediators from the activated platelets to the early stage of restoring the damaged cells and tissues. This study demonstrated that the greater expression level of O-C assists in mediating the cytokine complex networks of TGF-β1 and PDGF-AB and induces platelet activities towards wound healing in vWD. With a better understanding of chitosan's mechanisms of action, researchers are able to accurately develop novel therapies to prevent hemorrhage.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links