Displaying all 3 publications

Abstract:
Sort:
  1. Asmaa MJS, Al-Jamal HA, Hussein AR, Yahaya BH, Hassan R, Hussain FA, et al.
    Int J Hematol Oncol Stem Cell Res, 2020 Jan 01;14(1):72-92.
    PMID: 32337016
    Background: Acute myeloid leukemia (AML) is the most common form of acute leukemias in adults which is clinically and molecularly heterogeneous. Several risk and genetic factors have been widely investigated to characterize AML. However, the concomitant epigenetic factors in controlling the gene expression lead to AML transformation was not fully understood. This study was aimed to identify epigenetically regulated genes in AML cell lines induced by epigenetic modulating agents, Trichostatin A (TSA) and 5-Azacytidine (5-Aza). Materials and Methods: MV4-11 and Kasumi 1 were treated with TSA and/or 5-Aza at IC50 concentration. Gene expression profiling by microarray was utilized using SurePrint G3 Human Gene Expression v3. Gene ontology and KEGG pathway annotations were analyzed by DAVID bioinformatics software using EASE enrichment score. mRNA expression of the differentially expressed genes were verified by quantitative real time PCR. Results: Gene expression analysis revealed a significant changes in the expression of 24,822, 15,720, 15,654 genes in MV4-11 and 12,598, 8828, 18,026 genes in Kasumi 1, in response to TSA, 5-Aza and combination treatments, respectively, compared to non-treated (p<0.05). 7 genes (SOCS3, TUBA1C, CCNA1, MAP3K6, PTPRC, STAT6 and RUNX1) and 4 genes (ANGPTL4, TUBB2A, ADAM12 and PTPN6) shown to be predominantly expressed in MV4-11 and Kasumi 1, respectively (EASE<0.1). The analysis also revealed phagosome pathway commonly activated in both cell lines. Conclusion: Our data showed a distinct optimal biological characteristic and pathway in different types of leukemic cell lines. These finding may help in the identification of cell-specific epigenetic biomarker in the pathogenesis of AML.
  2. Ankathil R, Foong E, Siti-Mariam I, Norhidayah R, Nazihah MY, Sangeetha V, et al.
    Int J Hematol Oncol Stem Cell Res, 2021 Jul 01;15(3):199-205.
    PMID: 35083001 DOI: 10.18502/ijhoscr.v15i3.6852
    Hyperdiploid multiple myeloma (MM) is associated with better prognosis and non-hyperdiploid subtype is associated with variable to adverse prognosis based on the nature of karyotype abnormality.  Rarely exceptions to this hyperdiploid and non-hyperdiploid divisions do exist in a minority. We report an adult male MM patient who showed hyperdiploid karyotype with few novel complex abnormalities and who showed poor clinical outcome. Conventional cytogenetic analysis carried out in 22 GTG banded metaphases showed 53,Y,der(X)t(X;22)(q27;q11.2),+3,+5,+6,+9,+11,+15,der(17)ins(17;1;3)(q11.2;?;?),der(17)ins(17;1;3)(q11.2;?;?),+19,-22,+mar karyotype pattern in 15 metaphases whereas 7 metaphases showed 46,XY karyotype  pattern.  Interphase FISH revealed biallelic del(13q14) and del(17p13) but no translocations involving the 14q32 region. Through Spectral karyotyping FISH, the origin of complex abnormalities involving der(17) chromosome,  translocation t(X;22), and marker chromosome could be clearly delineated. Although the present case showed hyperdiploid karyotype, he showed an adverse prognosis probably due to the co-existence of high risk and complex abnormalities and expired 5 months after initial diagnosis despite standard treatment given.
  3. Periayah MH, Halim AS, Mat Saad AZ
    Int J Hematol Oncol Stem Cell Res, 2017 Oct 01;11(4):319-327.
    PMID: 29340130
    Blood is considered to be precious because it is the basic necessity for health; our body needs a steady provision of oxygen, supplied via blood, to reach billions of tissues and cells. Hematopoiesis is the process that generates blood cells of all lineages. However, platelets are the smallest blood component produced from the very large bone marrow cells called megakaryocytes and they play a fundamental role in thrombosis and hemostasis. Platelets contribute their hemostatic capacity via adhesion, activation and aggregation, which are triggered upon tissue injury, and these actions stimulate the coagulation factors and other mediators to achieve hemostasis. In addition, these coordinated series of events are the vital biological processes for wound healing phases. The aim of this review is to summarize and highlight the important pathways involved in achieving hemostasis that are ruled by platelets. In addition, this review also describes the mechanism action of platelets, including adhesion, activation, aggregation, and coagulation, as well as the factors that aid in hemostasis and wound healing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links