Displaying all 2 publications

Abstract:
Sort:
  1. Wei H, Dai J, Mahariq I, Ghasemi A, Mouldi A, Brahmia A
    Int J Hydrogen Energy, 2021 Dec 09.
    PMID: 34903909 DOI: 10.1016/j.ijhydene.2021.12.044
    In this work, an innovative integrated system that is incorporated from solid oxide electrolysis cells and an oxygen separator membrane is assessed and optimized from the techno-economic aspects to respond to oxygen, hydrogen, and nitrogen demands for hospitals and other health care applications. Besides, a parametric comparison is conducted to apprehend the weights of parameters changes on the performance of criteria. Relying on the assessments, from the hydrogen production of 1 kg/s, 23.19 kg/s of oxygen, and 50.22 kg/s of nitrogen are produced. The parametric study shows that by raising the working temperature of the electrolyzer, the cell voltage variation has descending trend and the power consumption of the system is decreased by 19%. Finally, the results of multi-criteria optimization on the Pareto front reveal that in the optimal case, the system payback period is attained at about 5.32 years and the exergy efficiency of 92.47%, which are improved 16.6% and 16.2% compared to the base case, sequentially. Consequently, this system is proposed to consider as a cost-effective and reliable option towards its vital and valuable productions, in the pandemic period and after's.
  2. Dharmaraj S, Ashokkumar V, Chew KW, Chia SR, Show PL, Ngamcharussrivichai C
    Int J Hydrogen Energy, 2022 Dec 30;47(100):42051-42074.
    PMID: 34776598 DOI: 10.1016/j.ijhydene.2021.08.236
    Usage of plastics in the form of personal protective equipment, medical devices, and common packages has increased alarmingly during these pandemic times. Though they have served as an excellent protection source in minimizing the coronavirus disease (COVID-19) spreading, they have still emerged as major environmental pollutants nowadays. These non-degradable COVID-19 plastic wastes (CPW) were treated through incineration and landfilling process, which may lead to either the release of harmful gases or contaminating the surrounding environment. Further, they can cause numerous health hazards to the human and animal populations. These plastic wastes can be efficiently managed through thermochemical processes like pyrolysis or gasification, which assist in degrading the plastic waste and also effectively convert them into useful energy-yielding products. The pyrolysis process promotes the formation of liquid fuels and chemicals, whereas gasification leads to syngas and hydrogen fuel production. These energy-yielding products can help to compensate for the fossil fuels depletion in the near future. There are many insights explained in terms of the types of reactors and influential factors that can be adopted for the pyrolysis and gasification process, to produce high efficient energy products from the wastes. In addition, advanced technologies including co-gasification and two-stage gasification were also reviewed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links