Displaying all 3 publications

Abstract:
Sort:
  1. Asemi A, Asemi A, Ko A, Alibeigi A
    J Big Data, 2022;9(1):13.
    PMID: 35127333 DOI: 10.1186/s40537-022-00560-z
    The study aimed to present an integrated model for evaluation of big data (BD) challenges and analytical methods in recommender systems (RSs). The proposed model used fuzzy multi-criteria decision making (MCDM) which is a human judgment-based method for weighting of RSs' properties. Human judgment is associated with uncertainty and gray information. We used fuzzy techniques to integrate, summarize, and calculate quality value judgment distances. Then, two fuzzy inference systems (FIS) are implemented for scoring BD challenges and data analytical methods in different RSs. In experimental testing of the proposed model, A correlation coefficient (CC) analysis is conducted to test the relationship between a BD challenge evaluation for a collaborative filtering-based RS and the results of fuzzy inference systems. The result shows the ability of the proposed model to evaluate the BD properties in RSs. Future studies may improve FIS by providing rules for evaluating BD tools.
  2. Sfayyih AH, Sulaiman N, Sabry AH
    J Big Data, 2023;10(1):101.
    PMID: 37333945 DOI: 10.1186/s40537-023-00762-z
    Recently, assistive explanations for difficulties in the health check area have been made viable thanks in considerable portion to technologies like deep learning and machine learning. Using auditory analysis and medical imaging, they also increase the predictive accuracy for prompt and early disease detection. Medical professionals are thankful for such technological support since it helps them manage further patients because of the shortage of skilled human resources. In addition to serious illnesses like lung cancer and respiratory diseases, the plurality of breathing difficulties is gradually rising and endangering society. Because early prediction and immediate treatment are crucial for respiratory disorders, chest X-rays and respiratory sound audio are proving to be quite helpful together. Compared to related review studies on lung disease classification/detection using deep learning algorithms, only two review studies based on signal analysis for lung disease diagnosis have been conducted in 2011 and 2018. This work provides a review of lung disease recognition with acoustic signal analysis with deep learning networks. We anticipate that physicians and researchers working with sound-signal-based machine learning will find this material beneficial.
  3. Razali NAM, Malizan NA, Hasbullah NA, Wook M, Zainuddin NM, Ishak KK, et al.
    J Big Data, 2021;8(1):150.
    PMID: 34900516 DOI: 10.1186/s40537-021-00536-5
    Background: Opinion mining, or sentiment analysis, is a field in Natural Language Processing (NLP). It extracts people's thoughts, including assessments, attitudes, and emotions toward individuals, topics, and events. The task is technically challenging but incredibly useful. With the explosive growth of the digital platform in cyberspace, such as blogs and social networks, individuals and organisations are increasingly utilising public opinion for their decision-making. In recent years, significant research concerning mining people's sentiments based on text in cyberspace using opinion mining has been explored. Researchers have applied numerous opinions mining techniques, including machine learning and lexicon-based approach to analyse and classify people's sentiments based on a text and discuss the existing gap. Thus, it creates a research opportunity for other researchers to investigate and propose improved methods and new domain applications to fill the gap.

    Methods: In this paper, a structured literature review has been done by considering 122 articles to examine all relevant research accomplished in the field of opinion mining application and the suggested Kansei approach to solve the challenges that occur in mining sentiments based on text in cyberspace. Five different platforms database were systematically searched between 2015 and 2021: ACM (Association for Computing Machinery), IEEE (Advancing Technology for Humanity), SCIENCE DIRECT, SpringerLink, and SCOPUS.

    Results: This study analyses various techniques of opinion mining as well as the Kansei approach that will help to enhance techniques in mining people's sentiment and emotion in cyberspace. Most of the study addressed methods including machine learning, lexicon-based approach, hybrid approach, and Kansei approach in mining the sentiment and emotion based on text. The possible societal impacts of the current opinion mining technique, including machine learning and the Kansei approach, along with major trends and challenges, are highlighted.

    Conclusion: Various applications of opinion mining techniques in mining people's sentiment and emotion according to the objective of the research, used method, dataset, summarized in this study. This study serves as a theoretical analysis of the opinion mining method complemented by the Kansei approach in classifying people's sentiments based on text in cyberspace. Kansei approach can measure people's impressions using artefacts based on senses including sight, feeling and cognition reported precise results for the assessment of human emotion. Therefore, this research suggests that the Kansei approach should be a complementary factor including in the development of a dictionary focusing on emotion in the national security domain. Also, this theoretical analysis will act as a reference to researchers regarding the Kansei approach as one of the techniques to improve hybrid approaches in opinion mining.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links