A drug-inorganic nanostructured material involving pharmaceutically active compound lawsone intercalated Zn-Al layered double hydroxides (Law-LDHs) with Zn/AI = 4 has been assembled by co-precipitation and ion exchange methods. Powder X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) analysis indicate a successful intercalation of lawsone between the layers of layered double hydroxides. It suggests that layered double hydroxides may have application as the basis of a drug delivery system.
Nanotechnology is drawing attention nowadays due to its ability to regulate metals into nanosize, ultimately changing metal's physical, chemical, and optical properties. Silver nanoparticles are known for their potential impact as antimicrobial agents due to their inherent property penetrating the cell wall. The present study aimed to develop and statistically optimise using a novel combination of capsaicin loaded silver nanoparticles (AgCNPs) as an effective anti-bacterial agent to treat psoriasis using a green approach. Ascorbic acid was used as a reducing agent to fabricate silver nanoparticles. The formulation parameters optimisation was conducted using Box-Behnken Design (3×3 factorial design). The loading of capsaicin was confirmed by attenuated total reflectance-fourier transform infrared spectroscopy. Energy-dispersive X-ray spectroscopy-scanning electron microscopy (EDX-SEM) confirmed the existence of silver; net-like structure revealed in SEM and high-resolution transmission electron microscopy further confirmed the nano size of the formulation. Differential scanning calorimetry and X-ray diffraction demonstrated the capsaicin transformed into amorphous after encapsulated. An in-vitro microbial study showed that the 0.10 M formulation of AgCNPs exerted potent anti-bacterial activity, which can be considered an alternative anti-bacterial agent. It also displayed that the zone of inhibition was significantly high in gram-negative bacteria (E. coli) than gram-positive bacteria (S. aureus). Green synthesised AgCNPs showed highly significant anti-bacterial activity, which indicates that this formulation can be very promising for treating psoriasis.
An aptasensor was developed on an interdigitated microelectrode (IDME) by current-volt sensing for the diagnosis of ulcerative colitis by detecting the biomarker lipocalin-2. Higher immobilization of the anti-lipocalin-2 aptamer as a probe was achieved by using sodium dodecyl benzenesulfonate-aided zeolite particles. FESEM and FETEM observations revealed that the size of the zeolite particles was <200 nm, and they displayed a uniform distribution and spherical shape. XPS analysis attested the occurrence of Si, Al, and O groups on the zeolite particles. Zeolite particles were immobilized on IDME by a (3-aminopropyl)-trimethoxysilane amine linker, and then, the aptamer as the probe was tethered on the zeolite particles through a biotin-streptavidin strategy assisted by a bifunctional aldehyde linker. Due to the high occupancy of the aptamer and the efficient electric transfer from zeolite particles, higher changes in current can be observed upon interaction of the aptamer with lipocalin-2. The lower detection of lipocalin-2 was noted as 10 pg/mL, with a linear range from 10 pg/mL to 1 μg/mL and a linear regression equation of y=8E-07x+8E-08; R² = 0.991. Control experiments with complementary aptamer and matrix metalloproteinase-9 indicate the specific detection of lipocalin-2. Furthermore, spiking lipocalin-2 in human serum does not interfere with the identification.