Displaying all 3 publications

Abstract:
Sort:
  1. Hae Rim L, Bon-Sang K, Eun-Ok J, Moo-Sung H, Kyung-Cheol M, Seung Baek L, et al.
    J Biomed Res, 2016 Oct 17;30(6):0.
    PMID: 27760890

    Leucocytozoonosis was found in three layer farms in chickens with suspected fatty liver or fatty liver hemorrhagic syndrome in Korea between 2009 and 2011. These layer chicken flocks showed both mortality and decreased egg production for one or two weeks when they were between 59 and 82 weeks old. At the necropsy, the most prominent gross lesions were found in the liver, which was enlarged, had a fragile texture, exhibited yellowish discolorations, and had various hemorrhagic lesions. Tissue reactions associated with megaloschizonts specific for Leucocytozoon caulleryi were prominent upon microscopic examination of the liver without significant lipidosis. In addition, the ovaries and uterus were the most affected organs for Leucocytozoon caulleryi multiplication, which led to decreased egg productions. Molecular studies with formalin-fixed, paraffin-embedded tissues were performed in search of a partial region of the cytochrome b gene for hemosporidian parasites. Based on these results, the causal agent was determined to be closely related to Leucocytozoon caulleryi reported in Japan and Malaysia. In this study, we describe recently re-occurring leucocytozoonosis in layer chickens, which required histopathology for disease diagnosis. To prevent outbreaks and maintain chicken health and egg production, layer chickens need to be monitored for symptoms of leucocytozoonosis.

    .
  2. Deshmukh R, Sharma L, Tekade M, Kesharwani P, Trivedi P, Tekade RK
    J Biomed Res, 2016 Mar;30(2):149-161.
    PMID: 28276670 DOI: 10.7555/JBR.30.20150074
    In this investigation, sensitive and reproducible methods are described for quantitative determination of deflazacort in the presence of its degradation product. The method was based on high performance liquid chromatography of the drug from its degradation product on reverse phase using Acquity UPLC BEH C18 columns (1.7 µm, 2.1 mm × 150 mm) using acetonitrile and water (40:60 V/V) at a flow rate of 0.2 mL/minute in UPLC. UV detection was performed at 240.1 nm. Deflazacort was subjected to oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The drug was found to be stable in water and thermal stress, as well as under neutral stress conditions. However, forced-degradation study performed on deflazacort showed that the drug degraded under alkaline, acid and photolytic stress. The degradation products were well resolved from the main peak, which proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to accuracy, linearity, limit of detection, limit of quantification, accuracy, precision and robustness, selectivity and specificity. Apart from the aforementioned, the results of the present study also emphasize the importance of isolation characterization and identification of degradant. Hence, an attempt was made to identify the degradants in deflazacort. One of the degradation products of deflazacort was isolated and identified by the FTIR, NMR and LC-MS study.
  3. Arefin A, Ismail Ema T, Islam T, Hossen S, Islam T, Al Azad S, et al.
    J Biomed Res, 2021 Nov 06;35(6):459-473.
    PMID: 34857680 DOI: 10.7555/JBR.35.20210111
    Lassa hemorrhagic fever, caused by Lassa mammarenavirus (LASV) infection, accumulates up to 5000 deaths every year. Currently, there is no vaccine available to combat this disease. In this study, a library of 200 bioactive compounds was virtually screened to study their drug-likeness with the capacity to block the α-dystroglycan (α-DG) receptor and prevent LASV influx. Following rigorous absorption, distribution, metabolism, and excretion (ADME) and quantitative structure-activity relationship (QSAR) profiling, molecular docking was conducted with the top ligands against the α-DG receptor. The compounds chrysin, reticuline, and 3-caffeoylshikimic acid emerged as the top three ligands in terms of binding affinity. Post-docking analysis revealed that interactions with Arg76, Asn224, Ser259, and Lys302 amino acid residues of the receptor protein were important for the optimum binding affinity of ligands. Molecular dynamics simulation was performed comprehensively to study the stability of the protein-ligand complexes. In-depth assessment of root-mean-square deviation (RMSD), root mean square fluctuation (RMSF), polar surface area (PSA), B-Factor, radius of gyration (Rg), solvent accessible surface area (SASA), and molecular surface area (MolSA) values of the protein-ligand complexes affirmed that the candidates with the best binding affinity formed the most stable protein-ligand complexes. To authenticate the potentialities of the ligands as target-specific drugs, an in vivo study is underway in real time as the continuation of the research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links