Displaying all 17 publications

Abstract:
Sort:
  1. Baharuddin NH, Nik Sulaiman NM, Aroua MK
    J Environ Health Sci Eng, 2014;12(1):61.
    PMID: 24618019 DOI: 10.1186/2052-336X-12-61
    In this study the removal of Chromium (III) and Chromium (VI) ions are investigated via polymer enhanced ultrafiltration under important process parameters. This study proposes the use of unmodified starch as a novel polymer in the ultrafiltration process and its performance on the removal of chromium ions was compared with a commonly used polymer, polyethylene glycol.
  2. Talaiekhozani A, Jafarzadeh N, Fulazzaky MA, Talaie MR, Beheshti M
    PMID: 26413306 DOI: 10.1186/s40201-015-0221-z
    Pollution associated with crude oil (CO) extraction degrades the quality of waters, threatens drinking water sources and may ham air quality. The systems biology approach aims at learning the kinetics of substrate utilization and bacterial growth for a biological process for which very limited knowledge is available. This study uses the Pseudomonas aeruginosa to degrade CO and determines the kinetic parameters of substrate utilization and bacterial growth modeled from a completely mixed batch reactor. The ability of Pseudomonas aeruginosa can remove 91 % of the total petroleum hydrocarbons and 83 % of the aromatic compounds from oily environment. The value k of 9.31 g of substrate g(-1) of microorganism d(-1) could be far higher than the value k obtained for petrochemical wastewater treatment and that for municipal wastewater treatment. The production of new cells of using CO as the sole carbon and energy source can exceed 2(3) of the existing cells per day. The kinetic parameters are verified to contribute to improving the biological removal of CO from oily environment.
  3. Banana AA, Mohamed RM, Al-Gheethi AA
    PMID: 26900479 DOI: 10.1186/s40201-016-0246-y
    BACKGROUND: Farwa is an Island in Libya receives petrochemical wastes generated from General Company of Chemical Industries (GCCI) since more than 40 years.

    AIM: The present work aimed to determine the concentrations of mercury (Hg(+2)) in fish, marine plants and sediment collected from Farwa lagoon to evaluate effect of industrial wastewater from GCCI on the marine environment.

    METHODS: Hundred and twelve samples of fish, pearl oyster, cuttlefish sediments and marine plants were analyzed to determine Hg(2+) concentration during the period from January to August 2014 by using Atomic Absorption Spectrometer (AAS).

    RESULTS: The highest concentration of Hg(2+) was detected in Pinctada radiata (11.67 ± 3.30 μgg (-1)) followed by Serranus scriba (6.37 ± 0.11 μg g (-1)) and Epinephelus marginatus (6.19 ± 0.02 μg g (-1)). About 75 % of marine plants contained the maximum contaminations during the summer season. In fish samples Hg(2+) concentrations exceeded the levels provided by international standards.

    CONCLUSIONS: The fish at Farwa lagoon is heavily contaminated with Hg(2+) which may represent a source for mercury poisoning for human.

  4. Ahmad F, Azman S, Said MI, Baloo L
    PMID: 26029376 DOI: 10.1186/s40201-015-0198-7
    Metals concentrations (As, Cd, Cu, Hg and Pb) in seawater, sediment and the seagrass (Enhalus acoroides) were analysed at Pulai River estuary, Johor Straits, Malaysia. In this research, Enhalus acoroides was used in order to find it's efficiency in up taking metals with a role in phytoremediation. Seawater, sediment and Enhalus acoroides samples were collected, and data of Pearson's correlation coefficients were analysed using SPSS 16 software. Results show that lead levels were the highest metal content in Enhalus acoroides (202 ± 102 μg/gDW), seawater (268 ± 190 μg/L) and sediment (248 ± 218 μg/gDW), compared to other metals. There was a positive correlation for metal concentrations between Enhalus acoroides and sediment, but no correlation was found between Enhalus acoroides with seawater at estuarine area may be caused by inconsistent metal concentrations in seawater due to the influences of tidal changes and stormy waves. This indicates that Enhalus acoroides is a species possessing the capabilities to uptake metals from sediment, and suitable to act as both a phytoremediator and biomonitor in estuarine ecosystems due to sharp sensitivity to variation in the environment.
  5. Ahmad A, Ghufran R, Al-Hosni TK
    J Environ Health Sci Eng, 2019 Dec;17(2):1195-1203.
    PMID: 32030185 DOI: 10.1007/s40201-019-00434-2
    To investigate the interaction of zinc oxide nanoparticles (ZnO NPs) with fly ash soil (FAS) for the reduction of metals from FAS by Parthenium hysterophorus were studied. The average accumulation of metals by P. hysterophorus stem were Fe 79.6%; Zn 88.5%; Cu 67.5%; Pb 93.6%; Ni 43.5% and Hg 39.4% at 5.5 g ZnO NP. The concentration of ZnO NP at 1.5 g did not affect the metals accumulation, however at 5.5 g ZnO NP showed highest metal reduction was 96.7% and at 10.5-15.5 g ZnO NP of 19.8%. The metal reduction rate was R
    max
    for Fe 16.4; Zn 21.1; Pb 41.9; Hg 19.1 was higher than Ni 6.4 and Cu 11.3 from the FAS at 5.5 g ZnO NP whereas, the reduction rate of Pb showed highest. With doses of 5.5 g ZnO NP the biomass increased upto 78%; the metal reduced upto 98.7% with the share of 100% ZnO NP from FAS. Further investigation with phytotoxicity the plant reactive oxygen species (ROS) production were affected due was mainly due to the recovery of metals from FAS (R2 = 0.99).
  6. Mahjouri M, Ishak MB, Torabian A, Manaf LA, Halimoon N
    J Environ Health Sci Eng, 2018 Dec;16(2):181-192.
    PMID: 30728990 DOI: 10.1007/s40201-018-0306-6
    Background: Environmental policies should be developed in a contextual decision-making process regarding local environmental concerns emphasizing the economic, technical, social and institutional considerations. Establishing emission limit levels, especially in the industrial sector, is one of the most problematic environmental issues in developing countries, for which it is essential to include several criteria that reflect their country-specific constraints and capacities. Since Best Available Technology (BAT) is acknowledged to be the reference element for sustainable development and a basis for Emissions Limit Values (ELVs), the objective of this study is to present a reliable methodology for establishing ELVs thresholds with an emphasis on the BAT concept for national regulation at the sector level.

    Methods: A hybrid fuzzy multiple-criteria decision-making (FMCDM) process, consisting of the Analytic Hierarchy Process (AHP) and fuzzy Technique for Order of Preference by Similarity to Ideal Solution (fuzzy TOPSIS) method, is structured to aggregate the different criteria and rank different ELV alternatives in this complicated evaluation. In order to use the most profound knowledge and judgment of a professional expert team, this qualitative assessment highlights the importance of supportive information.

    Results: The results obtained indicate that experts have considered the country-specific information as a reliable reference in their decisions. Among different key evaluation criteria in effluent standard setting, the highest experts' priority is "Environmental protection". For both the conventional and toxic pollutants, the influence of all other criteria namely "Economic feasibility", "Technology viability" and "Institutional capacity", as constraining criteria in developing countries, have not reduced the responsibility towards the environmental objectives. In ELVs ranking, experts have made their decisions with respect to the specific characteristics of each pollutant and the existing capacities and constraints of the country, without emphasizing on any specific reference.

    Conclusions: This systematic and transparent approach has resulted in defensible country-specific ELVs for the Iron and Steel industry, which can be developed for other sectors. As the main conclusion, this paper demonstrates that FMCDM is a robust tool for this comprehensive assessment especially regarding the data availability limitations in developing countries.

  7. Yau YH, Poh KS, Badarudin A
    J Environ Health Sci Eng, 2018 Dec;16(2):313-322.
    PMID: 30729002 DOI: 10.1007/s40201-018-0319-1
    The current case study was conducted to identify the causes of environmental health issues in the office space associated with the existing Underfloor Air Distribution (UFAD) system in a high-rise office building in the tropics. The causes of the indoor environmental quality degradation are the key to resolve the environmental health issues. Thus, the parameters such as the indoor air temperature, relative humidity (RH), relative air velocity, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde, total volatile organic compound (TVOC) and particulate matter (PM10) were evaluated in five office spaces. The results showed that the diffusers were not effective in creating air mixing at the occupied space. The RH has exceeded the threshold limit of 70%. The CO2 concentration has exceeded 1000 ppm, and the formaldehyde has exceeded 0.1 ppm. These indicate the poor design and maintenance of the building that lead to the degradation of indoor environmental quality. Long exposure to the poor indoor environmental quality will cause permanent health damages. The Indoor Air Quality (IAQ) management plan must be established and implemented in the ongoing basis to ensure the health of the occupants are safeguarded. As part of the plan, the practice to conduct an IAQ assessment once every 3 years is recommended to ensure the health and well-being of the occupants are safeguarded.
  8. Azizkhani S, Hussain SA, Abdullah N, Ismail MHS, Mohammad AW
    J Environ Health Sci Eng, 2021 Jun;19(1):491-502.
    PMID: 34150253 DOI: 10.1007/s40201-021-00622-z
    The functionalized graphene oxide by silica and chitosan helped to prepared an adsorbent with high adsorption potential for removing cadmium(II). In this study, the adsorbent was synthesized and the batch system of adsorption method was examined to find the potential of the new adsorbent with the various factors of the concentration, pH, time and temperature. The characterization of adsorbent was analyzed by FT-IR, TEM, Zeta potential and XRD analysis. Regards to the analysis it can be understood that the adsorbent was synthesized successfully. The investigational results were validated and analyzed by applying the 5 models of isotherm and 4 models of kinetic. The Langmuir, Freundlich, Temkin, Harkins-Jura and Dubinin-radushkevich models were used which the Langmuir, Freundlich and Temkin fitted well for removing cadmium(II). The Qmax value was achieved 126.58 mg/g by using the Langmuir model for removing Cd(II) respectively. The pseudo-first-order, pseudo-second-order, Elovich and Intra-particle models were used to validate the kinetic models of the process. The pseudo-second-order and Elovich models were the best fitted kinetic model in this investigation. Thermodynamic parameters of the energy of gibes, the enthalpy, and the entropy were calculated. Generally, the adsorption process was distinguished as an exothermic and spontaneous.
  9. Khalik WF, Ho LN, Ong SA, Wong YS, Yusoff NA, Lee SL
    J Environ Health Sci Eng, 2020 Dec;18(2):769-777.
    PMID: 33312601 DOI: 10.1007/s40201-020-00502-y
    In this study, the degradation efficiency and electricity generation of the azo dyes affected by the functional groups and molecular structure in a solar photocatalytic fuel cell (PFC) system were investigated and discussed in detail. Four different azo dyes such as, Acid Orange 7 (AO7), Acid Red 18 (AR18), Reactive Black 5 (RB5), Reactive Red 120 (RR120) with different molecular structure were evaluated. The degradation efficiency of AO7, AR18, RB5 and RR120 achieved 5.6 ± 0.3%, 11.1 ± 0.6%, 41.9 ± 0.9% and 52.1 ± 1.3%, respectively, after 6 h irradiated under solar light. In addition, the maximum power density, Pmax for AO7, AR18, RB5 and RR120 was 0.0269 ± 0.01, 0.111 ± 0.03, 1.665 ± 0.67 and 4.806 ± 1.79 mW cm-2, respectively. Meanwhile, the concentration of COD for AO7, AR18, RB5 and RR120 reduced to 16 ± 0.1, 10 ± 0.3, 7 ± 0.6 and 3 ± 0.9 mg L-1, respectively. The concentration ratio of benzene / naphthalene, benzene / azo bond and naphthalene / azo bond, respectively, was analyzed to investigate the impact of the functional groups over photodegradation of the azo dyes in PFC. Electron releasing groups (-OH and -NH2) and electron withdrawing groups (-SO3Na) which attached to the naphthalene or benzene ring also played a pivotal role in the degradation mechanism.
  10. Dadrasnia A, Usman MM, Abutawila Z, Omar R, Ismail S, Abdullah R
    J Environ Health Sci Eng, 2019 Dec;17(2):571-579.
    PMID: 32030135 DOI: 10.1007/s40201-019-00371-0
    Arsenic is a global environmental contaminant that imposes a big health threat which requires an immediate attention to clean-up the contaminated areas. This study examined the biosorption ability of a novel Bacillus strain for the removal of arsenate (pentavalent arsenic) from aqueous solution. The optimum biosorption condition was studied as a function of biomass dosage, contact time and pH. Dubinin-Radushkevich (D-R), Freundlich, and Langmuir models were applied in describing the biosorption isotherm. The maximal biosorption capacity (92%) was obtained at 25 °C, biomass concentration 2000 mg/L at pH value of 4 and contact period of 50 min. Strain 139SI act as an admirable host to the arsenate. Thermodynamic assessment (ΔG0, ΔH0, and ΔS0) also suggested the chemisorption and feasible process of As(V) biosorption. The reuse study illustrated the highest recovery of 93% using 1 M HCl, and a decrease of 25% in recovery of As(V) ions after 10 times desorption process.
  11. Alam O, Qiao X, Nath TK
    J Environ Health Sci Eng, 2020 Dec;18(2):1401-1414.
    PMID: 33312651 DOI: 10.1007/s40201-020-00556-y
    The preparation of chitosan has been investigated for more than half century; however, the application of chitosan for heavy metal (HM) adsorption is still under research. This study investigated the effects of chitosan with chemically controlled Ca-bearing contents (CBC) on Pb2+, Cd2+ and Cu2+ adsorption in the solution with the initial pH values of 2.10, 4.14 and 6.13. Highly purified chitosan showed the optimum HM adsorption at the initial pH values of 4.14 and 6.13, and the adsorption mechanism was chemisorption involving valence forces through sharing or exchange of electrons between the chitosan and HM ions. Highly purified chitosan prepared from HCl treated chitin only showed effective for Pb2+, however, those prepared from CH3COOH treated chitin showed effective for Pb2+, Cd2+ and Cu2+ adsorption due to a little amount of CBC. The HM adsorption mechanisms of partly purified chitosan were precipitation due to CBC and biosorption. Chitosan with 73% CBC showed the optimum adsorption of Pb2+ (755 mg/g) at an initial pH value of 2.10 while Cd2+ (979 mg/g) and Cu2+ (877 mg/g) at the initial pH values of 4.14 and 6.13. High Ca(OH)2-bearing chitosan prepared from HCl and H2SO4 treated chtin showed the optimum Cd2+ (978 mg/g) and Cu2+ (852 mg/g) adsorption at an initial pH value of 2.10. Biosorption isotherm and kinetics models showed that the adsorption data of Pb2+, Cd2+ and Cu2+ onto the surface of chitosan was well-fitted by Langmuir model and Pseudo-second-order model with correlation coefficient (R2 > 0.95 and R2 > 0.91, respectively). Pseudo-second-order model showed that the adsorption capacity strongly depended on CBC in chitosan and initial pH value of HM solution. It is concluded that the HM adsorption by the prepared chitosan is a chemical process that was supported by CBC of chitosan through elevating solution pH value.
  12. Alyousifi Y, Ibrahim K, Kang W, Zin WZW
    J Environ Health Sci Eng, 2021 Jun;19(1):343-356.
    PMID: 34150239 DOI: 10.1007/s40201-020-00607-4
    Air pollution is a matter of concern among the public, especially for those living in urban and industrial areas. Markov chain modeling is often used to model the underlying dynamics of air pollution, which involves describing the transition probability of going from one air pollution state to another. Thus, estimating the transition probability matrix for the data of the air pollution index (API) is an essential process in the modeling. However, one may observe many zero probabilities in the transition probability matrix, especially when faced with a small sample, interpreting the results with respect to the climate condition less realistic. This study proposes a robust empirical Bayes method, which incorporates a method of smoothing the zero frequencies in the count matrix, contributing to an improved estimation of the transition probability matrix. The robustness of the empirical Bayesian estimation is investigated based on Bayes risk. The transition probability matrices estimated based on the robust empirical Bayes method for the hourly API data collected from seven monitoring stations in Malaysia for the period 2012 to 2014 are used for determining the air pollution characteristics such as the mean residence time, the steady-state probability and the mean recurrence time. Furthermore, the proposed method has been evaluated by Monte Carlo simulations. Results suggest that it is quite effective in producing non-zero transition probability estimates, and superior to the maximum likelihood method in terms of minimizing the mean squared error for individual and entire transition probabilities. Therefore, the robust empirical Bayes method proves to be an improved approach to the estimation of the Markov chain. When applied to API data, it could provide important information on air pollution dynamics that may help guiding the development of proper strategies for managing the impact of air quality.

    Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-020-00607-4.

  13. Nkem BM, Halimoon N, Yusoff FM, Johari WLW
    J Environ Health Sci Eng, 2022 Dec;20(2):729-747.
    PMID: 36406595 DOI: 10.1007/s40201-022-00812-3
    A consortium of bacteria capable of decomposing oily hydrocarbons was isolated from tarballs on the beaches of Terengganu, Malaysia, and classified as Pseudomonas stutzeri, Cellulosimicrobium cellulans, Acinetobacter baumannii and Pseudomonas balearica. The Taguchi design was used to optimize the biodegradation of diesel using these bacteria as a consortium. The highest biodegradation of diesel-oil in the experimental tests was 93.6%, and the individual n-alkanes decomposed 87.6-97.6% over 30 days. Optimal settings were inoculum size of 2.5 mL (1.248 OD600nm); 12% (v/v) the initial diesel-oil in a minimal salt medium of pH 7.0, 30.0 gL-1 NaCl and 2.0 gL-1 NH4NO3 concentration, incubated at 42 °C temperature and 150 rpm agitation speed. Parameters significantly improved diesel-oil removal by consortium as shown by the model determination coefficient (R2 = 90.89%; P 
  14. Tan SM, Ong SA, Ho LN, Wong YS, Thung WE, Teoh TP
    J Environ Health Sci Eng, 2020 Dec;18(2):793-807.
    PMID: 33312603 DOI: 10.1007/s40201-020-00504-w
    This study demonstrated the effectiveness of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment concurrently with bioelectricity generation. The objectives of this study were to examine the effect of influent substrate concentration (0.405 g/L, 0.810 g/L, 1.215 g/L, 1.620 g/L), anode distributions (11 cm, 17 cm, 23 cm ) and surface morphologies for biofilm formation on the performance of wastewater treatment and power generation. The optimum performance was obtained with substrate concentration of 0.810 g/L. The COD removal efficiency, output voltage, internal resistance, power density and current density obtained were 84.64%, 610 mV, 200 Ω, 162.59 mW/m2 and 468.74 mA/m2, respectively. The Coulombic Efficiency (CE), Normalized Energy Recovery (NERS and NERv) were 1.03%, 789.38 kWh/kg COD and 22.56 kWh/m3, respectively. The results also indicate that the output voltage and power generation obtained in a continuous up-flow MFC were higher with A3 (23 cm), which is of larger electrodes spacing followed by A2 (17 cm) and A1 (11 cm) caused by the enrichment of anaerobic microbial population at A1.
  15. Zohdi N, Mahdavi F, Abdullah LC, Choong TS
    J Environ Health Sci Eng, 2014 Jan 06;12(1):3.
    PMID: 24393401 DOI: 10.1186/2052-336X-12-3
    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water.
  16. Muniyandi SK, Sohaili J, Hassan A, Mohamad SS
    PMID: 24764542 DOI: 10.1186/2052-336X-11-2
    The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB) waste as filler in recycled HDPE (rHDPE) in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE) was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM) was used to study the dispersion of nonmetallic PCB and MAPE in the matrix. Nonmetallic PCB was blended with rHDPE from 0-30 wt% and prepared by counter-rotating twin screw extruder followed by molding into test samples via hot press for analysis. A good balance between stiffness, strength and toughness was achieved for the system containing 30 wt% PCB. Thus, this system was chosen in order to investigate the effect of the compatibilizer on the mechanical properties of the composites. The results indicate that MAPE as a compatiblizer can effectively promote the interfacial adhesion between nonmetallic PCB and rHDPE. The addition of 6 phr MAPE increased the flexural strength, tensile strength and impact strength by 71%, 98% and 44% respectively compared to the uncompatibilized composites.
  17. Karamzadeh L, Salahi E, Mobasherpour I, Rajabi A, Javaheri M
    J Environ Health Sci Eng, 2024 Jun;22(1):305-312.
    PMID: 38887761 DOI: 10.1007/s40201-024-00901-5
    Mercury is one of the main components of fluorescent lamps. Considering the adverse effects of mercury on human health and the environment, recovery of mercury-containing fluorescent lamps is very important in developed countries. The glass parts of used fluorescent lamps are among the dangerous wastes whose mercury content should be reduced to the lowest possible level according to international standards. The aim of this research is to achieve a systematic approach to minimize the amount of mercury present in fluorescent lamp glass residues according to the European Commission EC95/2002 regulations. In order to extract mercury from glasses, glass pieces were washed with deionized water, using stirring to increase washing efficiency. In order to achieve the maximum amount of extraction, parameters such as ratio of glass to deionized water (S/L), stirring time, temperature and pH were changed. The results showed that, the highest mercury extraction rate is about 98% and in the conditions S/L = 0.1, stirring time of 12 h, temperature of 60 °C and pH 1, which is using a combination of HCl and H3PO4 acid 5% with a ratio of 1:4 has been obtained. The success of this method not only increases environmental sustainability, but also classifies the resulting glass waste as non-hazardous.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-024-00901-5.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links