Displaying all 15 publications

Abstract:
Sort:
  1. Gouwanda D, Senanayake SM
    J Med Eng Technol, 2011 Nov;35(8):432-40.
    PMID: 22074136 DOI: 10.3109/03091902.2011.627080
    A real-time gait monitoring system that incorporates an immediate and periodical assessment of gait asymmetry is described. This system was designed for gait analysis and rehabilitation of patients with pathologic gait. It employs wireless gyroscopes to measure the angular rate of the thigh and shank in real time. Cross-correlation of the lower extremity (Cc(norm)), and normalized Symmetry Index (SI(norm)) are implemented as new approaches to periodically determine the gait asymmetry in each gait cycle. Cc(norm) evaluates the signal patterns measured by wireless gyroscopes in each gait cycle. SI(norm) determines the movement differences between the left and right limb. An experimental study was conducted to examine the viability of these methods. Artificial asymmetrical gait was simulated by placing a load on one side of the limbs. Results showed that there were significant differences between the normal gait and asymmetrical gait (p < 0.01). They also indicated that the system worked well in periodically assessing the gait asymmetry.
  2. Langarizadeh M, Mahmud R, Ramli AR, Napis S, Beikzadeh MR, Rahman WE
    J Med Eng Technol, 2011 Feb;35(2):103-8.
    PMID: 21204610 DOI: 10.3109/03091902.2010.542271
    Breast cancer is one of the most important diseases in females worldwide. According to the Malaysian Oncological Society, about 4% of women who are 40 years old and above are involved have breast cancer. Masses and microcalcifications are two important signs of breast cancer diagnosis on mammography. Enhancement techniques, i.e. histogram equalization, histogram stretching and median filters, were used to provide better visualization for radiologists in order to help early detection of breast abnormalities. In this research 60 digital mammogram images which includes 20 normal and 40 confirmed diagnosed cancerous cases were selected and manipulated using the mentioned techniques. The original and manipulated images were scored by three expert radiologists. Results showed that the selected methods have a positive significant effect on image quality.
  3. Rahmatullah B, Besar R
    J Med Eng Technol, 2009;33(6):417-25.
    PMID: 19637083 DOI: 10.1080/03091900802451232
    The motivation of this paper is to analyse the efficiency and reliability of our proposed algorithm of femur length (FL) measurement for the estimation of gestational age. The automated methods are divided into the following components: threshold, segmentation and extraction. Each component is examined, and improvements are made with the objective of finding the optimal result for FL measurement. The methods are tested with a total of 200 different digitized ultrasound images from our database collection. Overall, the study shows that the watershed-based segmentation method combined with enhanced femur extraction algorithm and a 12 x 12 block averaging seed-point threshold method perform identically well with the expert measurements for every image tested and superior as compared to a previous method.
  4. Ahmad Fadzil MH, Ihtatho D, Mohd Affandi A, Hussein SH
    J Med Eng Technol, 2009;33(7):516-24.
    PMID: 19639508 DOI: 10.1080/07434610902744074
    Skin colour is vital information in dermatological diagnosis as it reflects the pathological condition beneath the skin. It is commonly used to indicate the extent of diseases such as psoriasis, which is indicated by the appearance of red plaques. Although there is no cure for psoriasis, there are many treatment modalities to help control the disease. To evaluate treatment efficacy, the current gold standard method, PASI (Psoriasis Area and Severity Index), is used to determine severity of psoriasis lesion. Erythema (redness) is one parameter in PASI and this condition is assessed visually, thus leading to subjective and inconsistent results. Current methods or instruments that assess erythema have limitations, such as being able to measure erythema well for low pigmented skin (fair skin) but not for highly pigmented skin (dark skin) or vice versa. In this work, we proposed an objective assessment of psoriasis erythema for PASI scoring for different (low to highly pigmented) skin types. The colour of psoriasis lesions are initially obtained by using a chromameter giving the values L*, a*, and b* of CIELAB colour space. The L* value is used to classify skin into three categories: low, medium and highly pigmented skin. The lightness difference (DeltaL*), hue difference (Deltah(ab)), chroma (DeltaC*(ab)) between lesions and the surrounding normal skin are calculated and analysed. It is found that the erythema score of a lesion can be distinguished by their Deltah(ab) value within a particular skin type group. References of lesion with different scores are obtained from the selected lesions by two dermatologists. Results based on 38 lesions from 22 patients with various level of skin pigmentation show that PASI erythema score for different skin types i.e. low (fair skin) to highly pigmented (dark skin) skin types can be determined objectively and consistent with dermatology scoring.
  5. Fadzil MH, Ihtatho D, Affandi AM, Hussein SH
    J Med Eng Technol, 2009;33(6):426-36.
    PMID: 19557605 DOI: 10.1080/07434610902744066
    Psoriasis is a skin disorder which is caused by a genetic fault. Although there is no cure for psoriasis, there are many treatment modalities to help control the disease. To evaluate treatment efficacy, the current gold standard method, PASI (Psoriasis Area and Severity Index), is used to measure psoriasis severity by evaluating the area, erythema, scaliness and thickness of the plaques. However, the determination of PASI can be tedious and subjective. In this work, we develop a computer vision method that determines one of the PASI parameters, the lesion area. The method isolates healthy and healed skin areas from lesion areas by analysing the hue and chroma information in the CIE L*a*b* colour space. Centroids of healthy skin and psoriasis in the hue-chroma space are determined from selected sample. The Euclidean distance of all pixels from each centroid is calculated. Pixels are assigned to either healthy skin or psorasis lesion classes based on the minimum Euclidean distance. The study involves patients from different ethnic origins having three different skin tones. Results obtained show that the proposed method is able to determine lesion areas with accuracy higher than 90% for 28 out of 30 cases.

    Study site: Dermatology Clinic, Hospital Kuala Lumpur
  6. Fadzil MH, Norashikin S, Suraiya HH, Nugroho H
    J Med Eng Technol, 2009;33(2):101-9.
    PMID: 19205989 DOI: 10.1080/03091900802454459
    This paper describes an image analysis technique that objectively measures skin repigmentation for the assessment of therapeutic response in vitiligo treatments. Skin pigment disorders due to the abnormality of melanin production, such as vitiligo, cause irregular pale patches of skin. The therapeutic response to treatment is repigmentation of the skin. However the repigmentation process is very slow and is only observable after a few months of treatment. Currently, there is no objective method to assess the therapeutic response of skin pigment disorder treatment, particularly for vitiligo treatment. In this work, we apply principal component analysis followed by independent component analysis to represent digital skin images in terms of melanin and haemoglobin composition respectively. Vitiligo skin areas are identified as skin areas that lack melanin (non-melanin areas). Results obtained using the technique have been verified by dermatologists. Based on 20 patients, the proposed technique effectively monitored the progression of repigmentation over a shorter time period of six weeks and can thus be used to evaluate treatment efficacy objectively and more effectively.
  7. Ahmad Fadzil MH, Izhar LI, Venkatachalam PA, Karunakar TV
    J Med Eng Technol, 2007 Nov-Dec;31(6):435-42.
    PMID: 17994417 DOI: 10.1080/03091900601111201
    Information about retinal vasculature morphology is used in grading the severity and progression of diabetic retinopathy. An image analysis system can help ophthalmologists make accurate and efficient diagnoses. This paper presents the development of an image processing algorithm for detecting and reconstructing retinal vasculature. The detection of the vascular structure is achieved by image enhancement using contrast limited adaptive histogram equalization followed by the extraction of the vessels using bottom-hat morphological transformation. For reconstruction of the complete retinal vasculature, a region growing technique based on first-order Gaussian derivative is developed. The technique incorporates both gradient magnitude change and average intensity as the homogeneity criteria that enable the process to adapt to intensity changes and intensity spread over the vasculature region. The reconstruction technique reduces the required number of seeds to near optimal for the region growing process. It also overcomes poor performance of current seed-based methods, especially with low and inconsistent contrast images as normally seen in vasculature regions of fundus images. Simulations of the algorithm on 20 test images from the DRIVE database show that it outperforms many other published methods and achieved an accuracy range (ability to detect both vessel and non-vessel pixels) of 0.91 - 0.95, a sensitivity range (ability to detect vessel pixels) of 0.91 - 0.95 and a specificity range (ability to detect non-vessel pixels) of 0.88 - 0.94.
  8. Javed F, Venkatachalam PA, Hani AF
    J Med Eng Technol, 2007 Sep-Oct;31(5):341-50.
    PMID: 17701779 DOI: 10.1080/03091900600887876
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and due to the lack of early detection techniques, the incidence of CVD is increasing day by day. In order to address this limitation, a knowledge based system with embedded intelligent heart sound analyser (KBHSA) has been developed to diagnose cardiovascular disorders at early stages. The system analyses digitized heart sounds that are recorded from an electronic stethoscope using advanced digital signal processing and artificial intelligence techniques. KBHSA takes into account data including the patient's personal and past medical history, clinical examination, auscultation findings, chest x-ray and echocardiogram, and provides a list of diseases that it has diagnosed. The system can assist the general physician in making more accurate and reliable diagnosis under emergency conditions where expert cardiologists and advanced equipment are not readily available. To test the validity of the system, abnormal heart sound samples and medical data from 40 patients were recorded and analysed. The diagnoses made by the system were counter checked by four senior cardiologists in Malaysia. The results show that the findings of KBHSA coincide with those of cardiologists.
  9. Mahri N, Gan KB, Mohd Ali MA, Jaafar MH, Meswari R
    J Med Eng Technol, 2016 May;40(4):155-61.
    PMID: 27010162 DOI: 10.3109/03091902.2016.1153740
    The risk of heart attack or myocardial infarction (MI) may lead to serious consequences in mortality and morbidity. Current MI management in the triage includes non-invasive heart monitoring using an electrocardiogram (ECG) and the cardic biomarker test. This study is designed to explore the potential of photoplethysmography (PPG) as a simple non-invasive device as an alternative method to screen the MI subjects. This study emphasises the usage of second derivative photoplethysmography (SDPPG) intervals as the extracted features to classify the MI subjects. The statistical analysis shows the potential of "a-c" interval and the corrected "a-cC" interval to classify the subject. The sensitivity of the predicted model using "a-c" and "a-cC" is 90.6% and 81.2% and the specificity is 87.5% and 84.4%, respectively.
  10. Lim SH, Ng PK
    J Med Eng Technol, 2021 Feb;45(2):145-157.
    PMID: 33539247 DOI: 10.1080/03091902.2021.1873442
    A stretcher is a lightweight and portable apparatus used to facilitate the movement of patients who require medical care. While its design and functions have been known to man for over 600 years, there is still much room for improvement with regard to comfortability, mobility and ergonomics aspects. This study aims to synthesise design features from patents, journals and products for the conceptualisation of multifunctional stretchers. Based on the conceptual synthesis of this study, if a stretcher is redesigned to be foldable, then less storage space would be required, thus allowing the paramedic or medical person to store more stretchers and attend to multiple patients at a time. In comparison to a regular stretcher, a foldable stretcher would not only be smaller and more portable but would also help medical personnel reach the patient in a timelier manner. A reduction in response time for emergency medical services might increase the survival rate among patients who are in critical conditions. In the aspect of multifunctionality, the medical person may also be able to respond to different types of medical transportation needs. Multifunctional stretchers can increase the versatility of emergency medical service teams in adapting to different situations at a reduced cost.
  11. Teh YJ, Bahari Jambek A, Hashim U
    J Med Eng Technol, 2016 Sep 9.
    PMID: 27609558
    The aim of this paper is to discuss the latest nano-biosensor technologies and existing signal analyser algorithm methods so that an automatic and portable nano-biosensor analyser can be realised. In this paper, the latest nano-biosensors are reviewed, and particular attention is given to sensors that provide amplitude changes at their output. To provide an automatic signal analysis of these changes, existing signal processing algorithms for peak detection are also discussed in detail.
  12. Mahri N, Gan KB, Meswari R, Jaafar MH, Mohd Ali MA
    J Med Eng Technol, 2017 May;41(4):298-308.
    PMID: 28351231 DOI: 10.1080/03091902.2017.1299229
    Myocardial infarction (MI) is a common disease that causes morbidity and mortality. The current tools for diagnosing this disease are improving, but still have some limitations. This study utilised the second derivative of photoplethysmography (SDPPG) features to distinguish MI patients from healthy control subjects. The features include amplitude-derived SDPPG features (pulse height, ratio, jerk) and interval-derived SDPPG features (intervals and relative crest time (RCT)). We evaluated 32 MI patients at Pusat Perubatan Universiti Kebangsaan Malaysia and 32 control subjects (all ages 37-87 years). Statistical analysis revealed that the mean amplitude-derived SDPPG features were higher in MI patients than in control subjects. In contrast, the mean interval-derived SDPPG features were lower in MI patients than in the controls. The classifier model of binary logistic regression (Model 7), showed that the combination of SDPPG features that include the pulse height (d-wave), the intervals of "ab", "ad", "bc", "bd", and "be", and the RCT of "ad/aa" could be used to classify MI patients with 90.6% accuracy, 93.9% sensitivity and 87.5% specificity at a cut-off value of 0.5 compared with the single features model.
  13. Hameed HK, Wan Hasan WZ, Shafie S, Ahmad SA, Jaafar H, Inche Mat LN
    J Med Eng Technol, 2020 Apr;44(3):139-148.
    PMID: 32396756 DOI: 10.1080/03091902.2020.1753838
    To make robotic hand devices controlled by surface electromyography (sEMG) signals feasible and practical tools for assisting patients with hand impairments, the problems that prevent these devices from being widely used have to be overcome. The most significant problem is the involuntary amplitude variation of the sEMG signals due to the movement of electrodes during forearm motion. Moreover, for patients who have had a stroke or another neurological disease, the muscle activity of the impaired hand is weak and has a low signal-to-noise ratio (SNR). Thus, muscle activity detection methods intended for controlling robotic hand devices should not depend mainly on the amplitude characteristics of the sEMG signal in the detection process, and they need to be more reliable for sEMG signals that have a low SNR. Since amplitude-independent muscle activity detection methods meet these requirements, this paper investigates the performance of such a method on people who have had a stroke in terms of the detection of weak muscle activity and resistance to false alarms caused by the involuntary amplitude variation of sEMG signals; these two parameters are very important for achieving the reliable control of robotic hand devices intended for people with disabilities. A comparison between the performance of an amplitude-independent muscle activity detection algorithm and three amplitude-dependent algorithms was conducted by using sEMG signals recorded from six hemiparesis stroke survivors and from six healthy subjects. The results showed that the amplitude-independent algorithm performed better in terms of detecting weak muscle activity and resisting false alarms.
  14. Md Nadzri N, Hamzaid NA, Chung TY
    J Med Eng Technol, 2021 Oct;45(7):574-581.
    PMID: 34184592 DOI: 10.1080/03091902.2021.1936238
    Individuals with paraplegia spend their time on the wheelchair for life. Adapting to prolonged wheelchair seating for almost all activities of daily living is challenging. The loss of abilities to sense any pain or excessive seating pressure cause them to remain seated on the wheelchair without any pressure relief activities. This situation leads to secondary complications including pressure ulcer which further degrades the individual's health. To overcome this, a wheelchair seating pressure relief training system (WSETs) was developed. Optimal placement of the force sensitive resistors (FSR) as seating pressure sensors on the cushion were determined, and their responses were investigated with 5 paraplegics. Two different FSR orientations, A and B, were compared. Each paraplegic sat in resting position and then performed pressure relief activities (PRA) which included whole body push-up, left and right lean and forward lean, before returning to resting position. Orientation B, with more forward positioned FSRs, showed higher sensitivity, implying better capture of high-risk area of pressure ulcer development. The FSR sensor readings were significantly different among pressure relief activities in all subjects (p 
  15. Sweeti, Joshi D, Panigrahi BK, Anand S, Santhosh J
    J Med Eng Technol, 2018 Feb;42(2):113-120.
    PMID: 29448856 DOI: 10.1080/03091902.2018.1433244
    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links