Parkinson's disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3-AF4, F7-F8, F3-F4, FC5-FC6, T7-T8, P7-P8, and O1-O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities.
Chlorpyrifos (CPF), an organophosphate pesticide inhibits acetylcholinesterase (AChE) and causes neuromuscular incoordination among children and elderly. The objectives of the present study were to compare the neurotoxic effects of dermal application of CPF on the cerebellum in the parameters of glial fibrillary acidic protein (GFAP) expression in young and adult mice and to correlate with the changes in acetylcholinesterase levels. Male Balb/c mice, 150 days old (adult) and 18 days old (young) were dermally applied with ½ LD(50) of CPF over the tails for 14 days. Serum AChE concentration was estimated and GFAP immunostaining was performed on sagittal paraffin sections through the vermis of cerebellum. Although reduced in both age-groups exposed to CPF, percentage of reduction in serum AChE was more in adult compared to the young. Under GFAP immunostaining, brown colour fibres and glial cells were observed in cerebellar cortex and medulla in both the experimental groups. The mean GFAP-positive glial cell count in cerebellar medulla per mm(2) of section was significantly (p
The locus coeruleus (LC) as a target of addictive drugs receives a dense projection of orexinergic fibres from the lateral hypothalamus (LH) and is accordingly a candidate site for the expression of the somatic aspects of morphine withdrawal. Recently it has been shown that the inhibitory synaptic currents of LC neurons decrease partly through orexin type 1 receptors in the context of naloxone-induced morphine withdrawal; however, its cellular mechanism remains unclear. In this study, whole-cell patch clamp recordings of LC neurons in brainstem slices were used to investigate the impact of protein kinase C (PKC) on GABAergic inhibitory post-synaptic currents (IPSCs) in the context of naloxone-induced morphine withdrawal. Male Wistar rats (P14-P21) received morphine (20 mg/kg, i.p.) daily for 7 consecutive days to induce morphine dependency. Our results showed that the application of PKC inhibitor (Go 6983; 1 µM) alone did not decrease the probability of GABA release in the LC neurons of the morphine-treated rats in the presence of naloxone. Although, Go 6983 reversed the reduction of the amplitude of evoked IPSCs (eIPSCs) and spontaneous IPSCs (sIPSCs) frequency induced by orexin-A but did not change the sIPSCs amplitude. These results indicate that the suppressive effect of orexin-A on IPSCs is probably reversed by PKC inhibitor in the LC neurons of morphine-treated rats in the context of naloxone withdrawal.
Major depressive disorder (MDD) is primarily hinged on the presence of either low mood and/or anhedonia to previously pleasurable events for a minimum of 2 weeks. Other clinical features that characterize MDD include disturbances in sleep, appetite, concentration and thoughts. The combination of any/both of the primary MDD symptoms as well as any four of the other clinical features has been referred to as MDD. The challenge for replicating gene association findings with phenotypes of MDD as well as its treatment outcome is putatively due to stratification of MDD patients. Likelihood for replication of gene association findings is hypothesized with specificity in symptoms profile (homogenous clusters of symptom/individual symptoms) evaluated. The current review elucidates the genetic factors that have been associated with insomnia symptom of MDD phenotype, insomnia symptom as a constellation of neuro-vegetative cluster of MDD symptom, insomnia symptom of MDD as an individual entity and insomnia feature of treatment outcome. Homozygous CC genotype of 3111T/C, GSK3B-AT/TT genotype of rs33458 and haplotype of TPH1 218A/C were associated with insomnia symptom of MDD. Insomnia symptom of MDD was not resolved in patients with the A/A genotype of HTR2A-rs6311 when treated with SSRI. Homozygous short (SS) genotype-HTTLPR, GG genotype of HTR2A-rs6311 and CC genotype of HTR2A-rs6313 were associated with AD treatment-induced insomnia, while val/met genotype of BDNF-rs6265 and the TT genotype of GSK-3beta-rs5443 reduced it. Dearth of association studies may remain the bane for the identification of robust genetic endophenotypes in line with findings for genotypes of HTR2A-rs6311.
GBA variants are associated with increased risk and earlier onset of Parkinson's disease (PD), and more rapid disease progression especially with "severe" variants typified by p.L483P. GBA mutation screening studies from South-East Asia, with > 650 million inhabitants of diverse ancestries, are very limited. We investigated the spectrum of GBA variants, and associated clinico-demographic features, in a multi-ethnic PD cohort in Malaysia. Patients (n = 496) were recruited from seven centres, primarily of Chinese (45%), Malay (37%), and Indian (13%) ethnicities. All GBA coding exons were screened using a next-generation sequencing-based PD gene panel and verified with Sanger sequencing. We identified 14 heterozygous GBA alleles consisting of altogether 17 missense variants (8 classified as pathogenic or likely pathogenic for PD) in 25 (5.0%) patients, with a substantially higher yield among early (
Movement disorders are a major cause of disability worldwide and their increasing prevalence predicts a substantial future burden of care. Impactful patient care requires availability of, and accessibility to, effective medications, knowledge, and disease awareness among both medical professionals and patients, driven by skilled personnel to harness and manage resources. The highest burden of movement disorders is in low-to-middle income countries where resources are often limited and infrastructure is insufficient to meet growing demands. This article focuses on the specific challenges faced in the management and delivery of care for movement disorders in Indochina, the mainland region of Southeast Asia comprising the neighboring countries of Cambodia, Laos, Malaysia, Myanmar, Thailand, and Vietnam. The first Indochina Movement Disorders Conference was held in August 2022 in Ho Chi Minh City, Vietnam, to provide a platform to better understand the situation in the region. Future management of movement disorders in Indochina will require progressive adaptation of existing practices to reflect modern approaches to care delivery. Digital technologies offer an opportunity to strengthen these processes and address the challenges identified in the region. Ultimately, a long-term collaborative approach by regional healthcare providers is key.