Displaying all 3 publications

Abstract:
Sort:
  1. Yiau SK, Lee C, Mohd Tohit ER, Chang KM, Abdullah M
    J Recept Signal Transduct Res, 2019 Jun;39(3):276-282.
    PMID: 31509041 DOI: 10.1080/10799893.2019.1660899
    Acute myeloid leukemia (AML) constitutively express growth factors and cytokines for survival. Chemotherapy alters these signals to induce cell death. However, drug resistance in AML remains a major hindrance to successful treatment and early warning is unavailable. Modulation of signaling pathways during chemotherapy may provide a window to detect response and predict treatment outcome. Blood samples collected from AML patients before and at day-3 of induction therapy were compared for changes in expression of CD117, CD34, pro-inflammatory cytokines and mediators of Akt and MAPK pathways, using multi-color flow cytometry. Nine patients were diagnosed as drug-resistant and seven sensitive to chemotherapy. Twelve were paired. Average percentages of CD34 (66.8 ± 11.7% vs. 26.2 ± 5.8%, p = 0.033) and pBAD (66.9 ± 8.2% vs. 28.9 ± 8.2%, p = 0.016) were significantly increased in chemo-resistant (N = 9) compared to chemo-sensitive (N = 5) samples. Percentages of CD34 were strongly correlated with pBAD (R = 0.785; p = 0.001; N = 14) and pFKHR (R = 0.755; p = 0.002; N = 14) at day-3 induction. Chemo-sensitive cases expressed significantly higher percentages of IL-18Rα (71.9 ± 9.6% vs. 29.8 ± 5.8%, p = 0.016). Though not significantly different in the outcome, IL-1β was strongly associated with activated Akt-S473, IL-6 with phosphorylated JNK and FKHR while TNF-α appeared to trigger Bim, in treated samples. These preliminary results suggested AML cells resistant to chemotherapy increased expression of CD34 and may signal through pBAD while cells sensitive to chemotherapy-induced IL18Rα expression. These were observed early during induction therapy. Identifying CD34 is interesting as it is a convenient marker to monitor drug-resistance in AML patients. Inhibition of CD34 and pBAD signaling may be important in treating drug-resistant AML.
  2. Zangeneh FZ, Bagheri M, Shoushtari MS, Naghizadeh MM
    J Recept Signal Transduct Res, 2021 Jun;41(3):263-272.
    PMID: 32878560 DOI: 10.1080/10799893.2020.1806320
    OBJECTIVE: Alpha and beta-adrenoceptors (ADR-α1, 2, and β2) play a regulatory role in the folliculogenesis and steroidogenesis in the ovarian follicles. This study aimed to measure these adrenoceptors mRNA and its protein levels in cumulus cells (CCs) culture of poor ovarian reserve (POR) and polycystic ovarian syndrome (PCOS) infertile women (IVF candidate) and the effect of clonidine treatment at CCs culture.

    METHODS: This case/control study was conducted in 2017 includes a control (donation oocytes) and two studies (PCO and POR) groups. The ovulation induction drugs were prescribed in all groups. After the oocyte puncture, the follicular fluid was collected and CCs were isolated were cultured. RNA was extracted and cDNA was synthesized and designed the primer for the ADR-α1, 2 and ADR-β2 gene expression. The protein levels were investigated by Western Blot.

    RESULTS: The results showed a high level of three adrenergic expressions in PCO women compared to the control group (p-value

  3. Md Idris MH, Mohd Amin SN, Mohd Amin SN, Wibowo A, Zakaria ZA, Shaameri Z, et al.
    PMID: 34323638 DOI: 10.1080/10799893.2021.1951756
    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed to treat inflammatory-related diseases, pain and fever. However, the prolong use of traditional NSAIDs leads to undesirable side effects such as gastric, ulceration, and renal toxicity due to lack of selectivity toward respective targets for COX-2, 5-LOX, and PDE4B. Thus, targeting multiple sites can reduce these adverse effects of the drugs and increase its potency. A series of methoxyflavones (F1-F5) were synthesized and investigated for their anti-inflammatory properties through molecular docking and inhibition assays. Among these flavones, only F2 exhibited selectivity toward COX-2 (Selectivity Index, SI: 3.90, COX-2 inhibition: 98.96 ± 1.47%) in comparison with celecoxib (SI: 7.54, COX-2 inhibition: 98.20 ± 2.55%). For PDEs, F3 possessed better selectivity to PDE4B (SI: 4.67) than rolipram (SI: 0.78). F5 had the best 5-LOX inhibitory activity among the flavones (33.65 ± 4.74%) but less than zileuton (90.81 ± 0.19%). Docking analysis indicated that the position of methoxy group and the substitution of halogen play role in determining the bioactivities of flavones. Interestingly, F1-F5 displayed favorable pharmacokinetic profiles and acceptable range of toxicity (IC50>70 µM) in cell lines with the exception for F1 (IC50: 16.02 ± 1.165 µM). This study generated valuable insight in designing new anti-inflammatory drug based on flavone scaffold. The newly synthesized flavones can be further developed as future therapeutic agents against inflammation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links