OBJECTIVE: We aimed to compare the phytochemical composition of 7 varieties growing in different conditions at various geographical locations. We also aimed to establish the quality control markers for the authentication of these varieties.
METHODS: We applied untargeted UHPLC-TOFMS metabolomics to discriminate 100 leaf samples of F. deltoidea collected from 6 locations in Malaysia. A genetic analysis on 21 leaf samples was also performed to validate the chemotaxonomy differentiation.
RESULTS: The PCA and HCA analysis revealed the existence of 3 chemotypes based on the differentiation in the flavonoid content. The PLS-DA analysis identified 15 glycosylated flavone markers together with 1 furanocoumarin. These markers were always consistent for the respective varieties, regardless of the geographical locations and growing conditions. The chemotaxonomy differentiation was in agreement with the DNA sequencing. In particular, var. bilobata accession which showed divergent morphology was also differentiated by the chemical fingerprints and genotype.
CONCLUSION: Chemotype differentiation based on the flavonoid fingerprints along with the proposed markers provide a powerful identification tool to complement morphology and genetic analyses for the quality control of raw materials and products from F. deltoidea.
OBJECTIVE: We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.
METHODS: The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.
RESULTS: The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.
CONCLUSION: Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.
AIM OF REVIEW: This review aims to explain the application of the metabolomics approach in the study of anti-diabetes and anti-obesity activity of Malaysian herbs to identify the stand-up point for future advancement in using these herbs as a primary source for drug exploration.
KEY SCIENTIFIC CONCEPTS OF REVIEW: This review provides an overview of using metabolomics technique in studying the anti-diabetes and anti-obesity activity of Malaysian herbs. Specific emphasis is given to the changed metabolites in both in vivo and in vitro treatment of Malaysia herbs that might be future drugs for treating diabetes and obesity.
OBJECTIVES: The objective of this study was to determine the contribution of host metabolites in genital Ct infection.
METHODS: We used high-performance liquid chromatography-mass spectrometry, and mapped lipid profiles in genital swabs obtained from female guinea pigs at days 3, 9, 15, 30 and 65 post Ct serovar D intravaginal infection.
RESULTS: Across all time points assessed, 13 distinct lipid species including choline, ethanolamine and glycerol were detected. Amongst these metabolites, phosphatidylcholine (PC) was the predominant phospholipid detected from animals actively shedding bacteria i.e., at 3, 9, and 15 days post infection. However, at days 30 and 65 when the animals had cleared the infection, PC was observed to be decreased compared to previous time points. Mass spectrometry analyses of PC produced in guinea pigs (in vivo) and 104C1 guinea pig cell line (in vitro) revealed distinct PC species following Ct D infection. Amongst these, PC 16:0/18:1 was significantly upregulated following Ct D infection (p < 0.05, >twofold change) in vivo and in vitro infection models investigated in this report. Exogenous addition of PC 16:0/18:1 resulted in significant increase in Ct D in Hela 229 cells.
CONCLUSION: This study demonstrates a role for host metabolite, PC 16:0/18:1 in regulating genital Ct infection in vivo and in vitro.