Displaying all 5 publications

Abstract:
Sort:
  1. Su YC, Wan KL, Mohamed R, Nathan S
    Microbes Infect., 2008 Oct;10(12-13):1335-45.
    PMID: 18761419 DOI: 10.1016/j.micinf.2008.07.034
    Burkholderia pseudomallei is the etiological agent of melioidosis, a severe infectious disease of humans and animals. The role of the bacterium's proteins expressed in vivo during human melioidosis continues to remain an enigma. This study's aim was to identify B. pseudomallei target proteins that elicit the humoral immune response in infected humans. A small insert genomic expression library was constructed and immunoscreened to identify peptides that reacted exclusively with melioidosis patients' sera. Sero-positive clones expressing immunogenic peptides were sequenced and annotated, and shown to represent 109 proteins involved in bacterial cell envelope biogenesis, cell motility and secretion, transcription, amino acid, ion and protein metabolism, energy production, DNA repair and unknown hypothetical proteins. Western blot analysis of three randomly selected full-length immunogenic polypeptides with patients' sera verified the findings of the immunome screening. The patients' humoral immune response to the 109 proteins suggests the induction or significant upregulation of these proteins in vivo during human infection and thus may play a role in the pathogenesis of B. pseudomallei. Identification of B. pseudomallei immunogens has shed new light on the elucidation of the bacterium's pathogenesis mechanism and disease severity. These immunogens can be further evaluated as prophylactic and serodiagnostic candidates as well as drug targets.
  2. Ong HT, Duraisamy G, Kee Peng N, Wen Siang T, Seow HF
    Microbes Infect., 2005 Mar;7(3):494-500.
    PMID: 15792534
    Hepatitis B virus (HBV) has been classified into eight genotypes, designated A-H. These genotypes are known to have distinct geographic distributions. The clinical importance of genotype-related differences in the pathogenicity of HBV has been revealed recently. In Malaysia, the current distribution of HBV remains unclear. The aim of this study was to determine the genotypes and subtypes of HBV by using PCR, followed by DNA sequencing, as well as to analyse the mutations in the immunodominant region of preS and S proteins. The S gene sequence was determined from HBV DNA of four apparently healthy blood donors' sera and three sera from asymptomatic chronic hepatitis B carriers. Of this batch of sera, the preS gene sequence was obtained from HBV DNA from three out of the four blood donors and two out of the three chronic carriers. Due to insufficient sera, we had to resort to using sera from another blood donor to make up for the sixth DNA sequence of the preS gene. Based on the comparative analysis of the preS sequences with the reported sequences in the GenBank database, HBV DNA from two normal carriers was classified as genotype C. Genotype B was assigned to HBV from one blood donor and two hepatitis B chronic carriers, whereas HBV of one chronic carrier was of genotype D. Based on the S gene sequences, HBV from three blood donors was of genotype C, that of one blood donor and one chronic carrier was of genotype B, and the remaining, of genotype D. In the five cases where both preS and S gene sequences were determined, the genotypes assigned based on either the preS or S gene sequences were in concordance. The nature of the deduced amino acid (aa) sequences at positions 125, 127, 134, 143, 159, 161 and 168 of the S gene enabled the classification of these sequences into subtypes, namely, adrq+, adw2 and ayw2. The clustering of our DNA sequences into genotype groups corresponded to their respective subtype, that is, adw2 in genotype B, adrq in genotype C and ayw in genotype D. Analysis of the point mutations revealed that five of the sequences contained aa substitutions at immunodominant epitopes involved in B or/and T cell recognition. In conclusion, despite the low numbers of samples studied, due to budget constraints, these data are still worthwhile reporting, as it is important for the control of HBV infections. In addition, the genotype and mutational data obtained in this study may be useful for designing new treatment regimes for HBV patients.
  3. Chua KB
    Microbes Infect., 2003 May;5(6):487-90.
    PMID: 12758277
    During the outbreak of Nipah virus encephalitis involving pigs and humans in peninsular Malaysia in 1998/1999, a conventional approach was initially undertaken to collect specimens from fruit bats by mist-netting and shooting, as an integral part of wildlife surveillance of the natural reservoir host of Nipah virus. This study describes a novel method of collecting fruit bats' urine samples using plastic sheets for isolation of Nipah virus. This novel approach resulted in the isolation of several other known and unidentified infectious agents besides Nipah virus.
  4. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al.
    Microbes Infect., 2002 Feb;4(2):145-51.
    PMID: 11880045
    In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.
  5. Lazarev VN, Stipkovits L, Biro J, Miklodi D, Shkarupeta MM, Titova GA, et al.
    Microbes Infect., 2004 May;6(6):536-41.
    PMID: 15158186
    The in vivo action of the antimicrobial peptide melittin, expressed from a recombinant plasmid vector, on chickens experimentally infected with Mycoplasma gallisepticum was studied. The plasmid vector pBI/mel2/rtTA includes the melittin gene under the control of an inducible tetracycline-dependent human cytomegalovirus promoter and the gene coding for the trans-activation protein rtTA. Aerosol administration of the vector, followed by infecting the chickens with M. gallisepticum 1226, is shown to inhibit development of infection. The inhibitory action was confirmed by a complex of clinical, pathomorphological, histological and serological studies, and also by comparing the M. gallisepticum reisolation frequency from the respiratory tract and internal organs. The data suggest that plasmid vectors expressing genes of antimicrobial peptides can be considered as potential agents for the prevention and treatment of mycoplasma infections in poultry farming.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links