Displaying all 2 publications

Abstract:
Sort:
  1. Chai PF, Rathinam X, Solayappan M, Ahmad Ghazali AH, Subramaniam S
    Microscopy (Oxf), 2014 Oct;63(5):371-5.
    PMID: 24943903 DOI: 10.1093/jmicro/dfu022
    The current study focused on the microscopic studies of a native Bacillus thuringiensis strain isolated from Malaysia, Bt-S84-13a, that produced an unusual crystal type. Primary detection of parasporal inclusions using a phase contrast microscope presented one to two small crystal proteins in the sporulating cells of Bt-S84-13a. Compound light microscopic examination of autolysed Bt-S84-13a cells stained with 0.133% Coomassie Brilliant Blue showed two types of crystal morphology: small crystals independent of spores and spore-associated crystals. Surface structure analysis with a scanning electron microscope revealed spherical-like, coarse and wrinkled-looking crystal in Bt-S84-13a. A close-up observation of the crystal morphology using a transmission electron microscope also demonstrated two parasporal inclusions in Bt-S84-13a. One inclusion was deposited against the forespore and was in a shape of incomplete rectangular. Another smaller inclusion was developed within the exosporium and was rectangular in shape. However, the latter inclusion was found lack in another bacterial cell which was still in the early stages of sporulation. This unique crystal morphology may imply some biological potential in Bt-S84-13a.
  2. Ang RBQ, Nisar H, Khan MB, Tsai CY
    Microscopy (Oxf), 2019 Apr 01;68(2):144-158.
    PMID: 30496508 DOI: 10.1093/jmicro/dfy134
    Activated sludge (AS) is a biological treatment process that is employed in wastewater treatment plants. Filamentous bacteria in AS plays an important role in the settling ability of the sludge. Proper settling of the sludge is essential for normal functionality of the wastewater plants, where filamentous bulking is always a persistent problem preventing sludge from settling. The performance of AS plants is conventionally monitored by physico-chemical procedures. An alternative way of monitoring the AS in wastewater treatment process is to use image processing and analysis. Good performance of the image segmentation algorithms is important to quantify flocs and filaments in AS. In this article, an algorithm is proposed to perform segmentation of filaments in the phase contrast images using phase stretch transform. Different values of strength (S) and warp (W) are tested to obtain optimum segmentation results and decrease the halo and shade-off artefacts encountered in phase contrast microscopy. The performance of the algorithm is assessed using DICE coefficient, accuracy, false positive rate (FPR), false negative rate (FNR) and Rand index (RI). Sixty-one gold approximations of ground truth images were manually prepared to assess the segmentation results. Thirty-two of them were acquired at 10× magnification and 29 of them were acquired at 20× magnification. The proposed algorithm exhibits better segmentation performance with an average DICE coefficient equal to 52.25%, accuracy 99.74%, FNR 41.8% and FPR 0.14% and RI 99.49%, based on 61 images.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links