Displaying all 10 publications

Abstract:
Sort:
  1. Zainal Abidin DH, Mustaffa S, Rahim MA, Nair DM, Md Naim D, Mohd Nor SA
    Mitochondrial DNA, 2016;27(1):647-58.
    PMID: 24786018 DOI: 10.3109/19401736.2014.913137
    Mitochondrial cytochrome oxidase subunit I (COI) gene was utilized to assess the population genetics of the commercially important black scar oyster, Crassostrea iredalei among 11 populations throughout the west and east coasts Peninsular Malaysia and Sabah (Malaysian Borneo). Overall, populations of C. iredalei demonstrated low nucleotide diversity π (0.000-0.004) and low-to-high haplotype diversity h (0.000-0.795) levels. Genetic structuring was detected between the Peninsular Malaysia and Sabah populations as revealed by the FST analysis. However, the COI gene analyses showed minimal and non-significant (p > 0.05) population differentiation within the east and west coasts Peninsular Malaysia and Sabah regions. This was attributed to both high larval dispersal along the east and west coasts and human-driven spat translocation between the two coastlines due to C. iredalei cultivation practices. Phylogeographic relationships inferences were also conducted to further support these hypotheses. The neutrality and mismatch distribution analyses suggested that C. iredalei had experienced a/several bottleneck event(s), followed by population expansion. The molecular information obtained from this study could be incorporated in a pragmatic aquaculture management strategy of wild broodstock and the hatchery lines of C. iredalei in Malaysia.
  2. Lim HC, Ahmad AT, Nuruddin AA, Mohd Nor SA
    Mitochondrial DNA, 2016;27(1):575-84.
    PMID: 24724977 DOI: 10.3109/19401736.2014.908354
    We evaluated genetic differentiation among ten presumed Japanese threadfin bream, Nemipterus japonicus populations along the coast of Peninsular Malaysia based on the partial sequence of the mitochondrial cytochrome b gene (982 bp). Genetic divergences (Kimura-2 parameter) ranged from 0.5% to 0.8% among nine of the ten populations while these nine populations were 4.4% to 4.6% diverged from the Kuala Besar population located at the Northeast coast. The constructed Neighbour Joining (NJ) phylogenetic trees based on haplotypes showed the Kuala Besar population forming an isolated cluster. The Analysis of Molecular Variance (AMOVA) of the ten populations a priori assigned into four regions, revealed that most of the variation occurred within population with a fairly low but significant level of regional differentiation (FST = 0.07, p < 0.05, FSC = 0.00, p > 0.05 and FCT = 0.07, p < 0.05) attributed to the Kuala Besar population. p Value after Bonferroni correction revealed that only pairwise FST values involving the Kuala Besar population with the other nine populations were significant. Thus, this study revealed that the N. japonicus populations off Peninsular Malaysia were panmictic. However, the Kuala Besar population, although morphologically identical was composed of a genetically discrete taxon from the rest. These findings are important contributions in formulating sustainable fishery management policies for this important fishery in Peninsular Malaysia.
  3. Gan HM, Tan MH, Lee YP, Schultz MB, Austin CM
    Mitochondrial DNA, 2016;27(1):595-6.
    PMID: 24730605 DOI: 10.3109/19401736.2014.908361
    The complete mitochondrial genome of the enigmatic freshwater crayfish Engaeus lyelli was sequenced using the MiSeq Personal Sequencer (Illumina, San Diego, CA). The mitogenome has 16,027 bp consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 23 transfer RNAs, and a non-coding AT-rich region. The base composition of E. lyelli is 29.01% for T, 27.13% for C, 31.43% for A, and 12.44% for G, with an AT bias of 60.44%. The species has the distinctive gene order characteristic of parastacid crayfish with the exception of some minor rearrangements involving the tRNA genes.
  4. Austin CM, Tan MH, Lee YP, Croft LJ, Meekan MG, Pierce SJ, et al.
    Mitochondrial DNA, 2016;27(1):694-5.
    PMID: 24779605 DOI: 10.3109/19401736.2014.913147
    The complete mitochondrial genome of the parasitic copepod Pandarus rhincodonicus was obtained from a partial genome scan using the HiSeq sequencing system. The Pandarus rhincodonicus mitogenome has 14,480 base pairs (62% A+T content) made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 384 bp non-coding AT-rich region. This Pandarus mitogenome sequence is the first for the family Pandaridae, the second for the order Siphonostomatoida and the sixth for the Copepoda.
  5. Austin CM, Tan MH, Lee YP, Croft LJ, Gan HM
    Mitochondrial DNA, 2016;27(1):729-30.
    PMID: 24779601 DOI: 10.3109/19401736.2014.913162
    The complete mitochondrial genome of the iconic Australian freshwater fish, the Murray Cod, Maccullochella peelii, was recovered from partial genome sequencing data using the HiSeq platform (Illumina, San Diego, CA). The mitogenome consists of 16,442 bp (58% A + T content) containing 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 768 bp non-coding AT-rich region. This is the first mitogenome sequence for the genus Maccullochella, and the fourth for the family Percichthyidae.
  6. Zhang YT, Ghaffar MA, Li Z, Chen W, Chen SX, Hong WS
    Mitochondrial DNA, 2016;27(1):62-4.
    PMID: 24438254 DOI: 10.3109/19401736.2013.873901
    The Boddart's goggle-eyed mudskipper, Boleophthalmus boddarti (Perciformes, Gobiidae) is an amphibious fish, inhabiting brackish waters of estuaries and builds burrows in soft mud along the intertidal zone. In this paper, the complete mitochondrial genome sequence of B. boddarti was firstly determined. The circle genome (16,727 bp) comprises 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 1 control region. The overall base composition of B. boddarti is 29.1% for C, 28.9% for A, 25.9% for T, and 16.0% for G, with a slight A + T bias of 54.8%. The termination-associated sequence, conserved sequence block domains, and a 131-bp tandem repeat were found in the control region. It has the typical vertebrate mitochondrial gene arrangement.
  7. Austin CM, Tan MH, Croft LJ, Gan HM
    Mitochondrial DNA, 2016;27(1):126-7.
    PMID: 24438281 DOI: 10.3109/19401736.2013.878907
    The complete mitochondrial genome of Cherax cainii was recovered from partial genome sequencing data using the HiSeq platform. The mitogenome consists of 15,801 base pairs (69% A + T content) containing 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a 783 bp non-coding AT-rich region. This is the second completely sequenced mitogenome from the genus Cherax after the first reported Cherax destructor mitogenome nearly a decade ago.
  8. Austin CM, Tan MH, Croft LJ, Gan HM
    Mitochondrial DNA, 2016;27(1):220-1.
    PMID: 24484586 DOI: 10.3109/19401736.2014.880897
    The complete mitochondrial genome of Cherax glaber was sequenced using the HiSeq platform. The mitogenome consists of 15,806 base pairs containing 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The Cherax glaber has a base composition of 32.39% for T, 22.42% for C, 33.73% for A and 11.46% for G, with an AT bias of 66.12%.
  9. Zhao H, Kong X, Zhou C
    Mitochondrial DNA, 2014 Oct;25(5):342-4.
    PMID: 23795847 DOI: 10.3109/19401736.2013.800492
    The Pangasius sutchi is an important ornamental and economic fish in Southeast Asia e.g. Thailand, Malaysia and China. The complete mitochondrial genome sequence of P. sutchi has been sequenced, which contains 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes and a non-coding control region with the total length of 16,522 bp. The gene order and composition are similar to most of other vertebrates. Just like most other vertebrates, the bias of G and C was found in different region/genes statistics results. Most of the genes are encoded on heavy strand, except for eight tRNA and ND6 genes. The mitogenome sequence of P. sutchi would contribute to better understand population genetics, evolution of this lineage.
  10. Yan J, Tian C, Zhou J, Bauer AM, Lee Grismer L, Zhou K
    Mitochondrial DNA, 2014 Jun;25(3):181-2.
    PMID: 23631365 DOI: 10.3109/19401736.2013.792066
    We sequenced the complete mitochondrial genome of the Tioman Island rock gecko, Cnemaspis limi, which is known as an endemic species to Malaysia. The complete mitogenome is 16,680 bp in size, consisting of 37 genes coding for 13 proteins, 22 transfer RNAs, two ribosomal RNAs and one control region. The A + T content of the overall base composition of H-strand is 53.09% (T: 23.20%, C: 32.48%, A: 29.89% and G: 14.43%). The major non-coding region (control region) is 1254 bp in length with the A + T content of 55.09% and four replicates of a 76-bp repeat within this region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links