Displaying all 6 publications

  1. Mohtar MA, Hernychova L, O'Neill JR, Lawrence ML, Murray E, Vojtesek B, et al.
    Mol Cell Proteomics, 2018 04;17(4):737-763.
    PMID: 29339412 DOI: 10.1074/mcp.RA118.000573
    AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway.
  2. Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH
    Mol Cell Proteomics, 2016 09;15(9):3003-16.
    PMID: 27412689 DOI: 10.1074/mcp.M116.059816
    Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the tumor tissue region whereas complex/hybrid N-glycans were significantly abundant in the intervening stroma. Therefore, tumor and non-tumor tissue regions were clearly demarcated solely on their N-glycan structure distributions.
  3. Ishihama Y, Chen YJ, Cho JY, Ming Chung MC, Cordwell SJ, Low TY, et al.
    Mol Cell Proteomics, 2021;20:100048.
    PMID: 33465491 DOI: 10.1016/j.mcpro.2021.100048
    The Asia-Oceania Human Proteome Organization (AOHUPO; www.aohupo.org) was officially founded on June 7, 2001, by Richard J. Simpson (Australia), Akira Tsugita (Japan), and Young-Ki Paik (Korea) and launched on October 1-4, 2001, at the second scientific meeting of the International Proteomics Conference held in Canberra, Australia. Inaugural council members of the AOHUPO elected were Richard J. Simpson (Australia, president), Qi-Chang Xia (China), Kazuyuki Nakamura (Japan), Akira Tsugita (Japan, VIce President), Young-Ki Paik (Korea, secretary general), Mike Hubbard (New Zealand), Max C. M. Chung (Singapore), Shui-Tien Chen (Taiwan), and John Bennett (Philippines). The first AOHUPO conference was held on March 26-27, 2002, at the Seoul National University, Seoul, Korea, conjointly with the second Annual Meeting of KHUPO. Since then, biennial AOHUPO conferences have been held in Taipei (2004), Singapore (2006), Cairns (2008), Hyderabad (2010), Beijing (2012), Bangkok (2014), Sun Moon Lake (2016), and Osaka (2018). The 10th AOHUPO conference is scheduled to be held in Busan on June 30 to July 2, 2021, to celebrate our 20th anniversary.
  4. Low TY, Chen YJ, Ishihama Y, Chung MCM, Cordwell S, Poon TCW, et al.
    Mol Cell Proteomics, 2022 Dec;21(12):100436.
    PMID: 36309314 DOI: 10.1016/j.mcpro.2022.100436
    In 2021, the Asia-Oceania Human Proteome Organization (AOHUPO) initiated a new endeavor named the AOHUPO Online Education Series with the aim to promote scientific education and collaboration, exchange of ideas and culture among the young scientists in the AO region. Following the warm participation, the AOHUPO organized the second series in 2022, with the theme "The Renaissance of Clinical Proteomics: Biomarkers, Imaging and Therapeutics". This time, the second AOHUPO Online Education Series was hosted by the UKM Medical Molecular Biology Institute (UMBI) affiliated to the National University of Malaysia (UKM) in Kuala Lumpur, Malaysia on three consecutive Fridays (11th, 18th and 25th of March). More than 300 participants coming from 29 countries/regions registered for this 3-days event. This event provided an amalgamation of six prominent speakers and all participants whose interests lay mainly in applying MS-based and non-MS-based proteomics for clinical investigation.
  5. Ziganshin RH, Ivanova OM, Lomakin YA, Belogurov AA, Kovalchuk SI, Azarkin IV, et al.
    Mol Cell Proteomics, 2016 Jul;15(7):2366-78.
    PMID: 27143409 DOI: 10.1074/mcp.M115.056036
    Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranvier's nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.
  6. Grey AC, Lin Q, Low TY, Wu W, Haynes PA, Chung MCM, et al.
    Mol Cell Proteomics, 2023 Sep;22(9):100627.
    PMID: 37532177 DOI: 10.1016/j.mcpro.2023.100627
    As the first in-person Asia Oceania Human Proteomics Organization (AOHUPO) congress since 2018, the 11th AOHUPO congress was an opportune time for the research community to reconnect and to renew friendships after the long period of restricted travel due to the global pandemic. Moreover, this congress was a great opportunity for the many AO regional proteomics and mass spectrometry scientists to meet in Singapore to exchange ideas and to present their latest findings. Cohosted by the Singapore Society for Mass Spectrometry and the Malaysian Proteomics Society and held in conjunction with the seventh Asia Oceania Agricultural Proteomics Organization Congress and Singapore Society for Mass Spectrometry 2023, the meeting featured both human and agricultural proteomics. Over five hundred scientists from the AO region converged on the MAX Atria @ Singapore EXPO, Changi, Singapore from May 8 to 10 for the main congress. The diverse program was made up of 64 invited speakers and panellists for seven plenary lectures, 27 concurrent symposia, precongress and postcongress workshops, and 174 poster presentations. The AOHUPO society were able to celebrate not only their 20th anniversary but also the outstanding academic research from biological and agricultural proteomics and related 'omics fields being conducted across the Asia-Oceania region.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links