Displaying all 7 publications

  1. Drew AP, Zhu D, Kidambi A, Ly C, Tey S, Brewer MH, et al.
    Mol Genet Genomic Med, 2015 Mar;3(2):143-54.
    PMID: 25802885 DOI: 10.1002/mgg3.126
    Inherited peripheral neuropathies (IPNs) are a group of related diseases primarily affecting the peripheral motor and sensory neurons. They include the hereditary sensory neuropathies (HSN), hereditary motor neuropathies (HMN), and Charcot-Marie-Tooth disease (CMT). Using whole-exome sequencing (WES) to achieve a genetic diagnosis is particularly suited to IPNs, where over 80 genes are involved with weak genotype-phenotype correlations beyond the most common genes. We performed WES for 110 index patients with IPN where the genetic cause was undetermined after previous screening for mutations in common genes selected by phenotype and mode of inheritance. We identified 41 missense sequence variants in the known IPN genes in our cohort of 110 index patients. Nine variants (8%), identified in the genes MFN2, GJB1, BSCL2, and SETX, are previously reported mutations and considered to be pathogenic in these families. Twelve novel variants (11%) in the genes NEFL, TRPV4, KIF1B, BICD2, and SETX are implicated in the disease but require further evidence of pathogenicity. The remaining 20 variants were confirmed as polymorphisms (not causing the disease) and are detailed here to help interpret sequence variants identified in other family studies. Validation using segregation, normal controls, and bioinformatics tools was valuable as supporting evidence for sequence variants implicated in disease. In addition, we identified one SETX sequence variant (c.7640T>C), previously reported as a putative mutation, which we have confirmed as a nonpathogenic rare polymorphism. This study highlights the advantage of using WES for genetic diagnosis in highly heterogeneous diseases such as IPNs and has been particularly powerful in this cohort where genetic diagnosis could not be achieved due to phenotype and mode of inheritance not being previously obvious. However, first tier testing for common genes in clinically well-defined cases remains important and will account for most positive results.
  2. Leung GK, Ying D, Mak CC, Chen XY, Xu W, Yeung KS, et al.
    Mol Genet Genomic Med, 2017 Jan;5(1):40-49.
    PMID: 28116329 DOI: 10.1002/mgg3.258
    Cystic fibrosis (CF) is a rare condition in Asians. Since 1985, only about 30 Chinese patients have been reported with molecular confirmation.
  3. Mohamad Shah NS, Sulong S, Wan Sulaiman WA, Halim AS
    Mol Genet Genomic Med, 2019 05;7(5):e635.
    PMID: 30924295 DOI: 10.1002/mgg3.635
    BACKGROUND: Nonsyndromic cleft lip and/or palate is one of the most common human birth defects worldwide that affects the lip and/or palate. The incidence of clefts varies among populations through ethnic, race, or geographical differences. The focus on Malay nonsyndromic cleft lip and/or palate (NSCL/P) is because of a scarce report on genetic study in relation to this deformity in Malaysia. We are interested to discuss about the genes that are susceptible to cause orofacial cleft formation in the family.

    METHODS: Genome-wide linkage analysis was carried out on eight large extended families of NSCL/P with the total of 91 individuals among Malay population using microarray platform. Based on linkage analyses findings, copy number variation (CNV) of LPHN2, SATB2, PVRL3, COL21A1, and TOX3 were identified in four large extended families that showed linkage evidence using quantitative polymerase chain reaction (qPCR) as for a validation purpose. Copy number calculated (CNC) for each genes were determined with Applied Biosystems CopyCallerTM Software v2.0. Normal CNC of the target sequence expected was set at two.

    RESULTS: Genome-wide linkage analysis had discovered several genes including TOX3 and COL21A1 in four different loci 4p15.2-p16.1, 6p11.2-p12.3, 14q13-q21, and 16q12.1. There was significant decreased, p 

  4. Yang Z, Cui Q, Zhou W, Qiu L, Han B
    Mol Genet Genomic Med, 2019 06;7(6):e680.
    PMID: 30968607 DOI: 10.1002/mgg3.680
    BACKGROUND: Thalassemia is a common genetic disorder. High prevalence of thalassemia is found in South China, Southeast Asia, India, the Middle East, and the Mediterranean regions. Thalassemia was thought to exist only in southern China, but an increasing number of cases from northern China have been recently reported.

    METHODS: During 2012 to 2017, suspected thalassemia people were detected for common α- and β-thalassemia mutations by gap-Polymerase Chain Reaction (PCR) and reverse dot blot (RDB) analysis in Peking Union Medical College Hospital. One thousand and fifty-nine people with thalassemia mutations were analyzed retrospectively. We picked mutated individuals who originally came from northern areas, and conducted telephone follow-up survey in order to collect their ancestral information. Besides, we used "thalassemia", "mutation", and "Southeast Asian countries" as keywords to search the relevant studies in PubMed and Embase databases.

    RESULTS: All carriers included in our study were resided in northern China. Among them, 17.3% were native northerners and 82.7% were immigrants from southern China. Although substantial difference was found in α- and β-thalassemia ratio and detailed spectrum of α- and β-globin mutation spectrum between our data and data obtained from a previous meta-analysis literature focused on southern China, the most common gene mutations were the same. Similar β-thalassemia mutation spectrum was found among Thai, Malaysian Chinese, and Guangdong people, however, no other similarities in gene profile were found between Chinese and other ethnic groups in Southeast Asia.

    CONCLUSION: Chinese people in different areas had similar gene mutation, whereas they had significantly different mutation spectrums from other ethnic groups in Southeast Asia.

  5. Ugai T, Milne RL, Ito H, Aronson KJ, Bolla MK, Chan T, et al.
    Mol Genet Genomic Med, 2019 06;7(6):e707.
    PMID: 31066241 DOI: 10.1002/mgg3.707
    BACKGROUND: Epidemiological studies consistently indicate that alcohol consumption is an independent risk factor for female breast cancer (BC). Although the aldehyde dehydrogenase 2 (ALDH2) polymorphism (rs671: Glu>Lys) has a strong effect on acetaldehyde metabolism, the association of rs671 with BC risk and its interaction with alcohol intake have not been fully elucidated. We conducted a pooled analysis of 14 case-control studies, with individual data on Asian ancestry women participating in the Breast Cancer Association Consortium.

    METHODS: We included 12,595 invasive BC cases and 12,884 controls for the analysis of rs671 and BC risk, and 2,849 invasive BC cases and 3,680 controls for the analysis of the gene-environment interaction between rs671 and alcohol intake for BC risk. The pooled odds ratios (OR) with 95% confidence intervals (CI) associated with rs671 and its interaction with alcohol intake for BC risk were estimated using logistic regression models.

    RESULTS: The Lys/Lys genotype of rs671 was associated with increased BC risk (OR = 1.16, 95% CI 1.03-1.30, p = 0.014). According to tumor characteristics, the Lys/Lys genotype was associated with estrogen receptor (ER)-positive BC (OR = 1.19, 95% CI 1.05-1.36, p = 0.008), progesterone receptor (PR)-positive BC (OR = 1.19, 95% CI 1.03-1.36, p = 0.015), and human epidermal growth factor receptor 2 (HER2)-negative BC (OR = 1.25, 95% CI 1.05-1.48, p = 0.012). No evidence of a gene-environment interaction was observed between rs671 and alcohol intake (p = 0.537).

    CONCLUSION: This study suggests that the Lys/Lys genotype confers susceptibility to BC risk among women of Asian ancestry, particularly for ER-positive, PR-positive, and HER2-negative tumor types.

  6. Gopalai AA, Lim JL, Li HH, Zhao Y, Lim TT, Eow GB, et al.
    Mol Genet Genomic Med, 2019 11;7(11):e604.
    PMID: 31487119 DOI: 10.1002/mgg3.604
    BACKGROUND: The LRRK2 gene is associated with Parkinson's disease (PD) as a number of mutations within the gene have been shown to be susceptibility factors. Studies on various global populations have determined that mutations such as G2019S, G2385R, and R1628P in LRRK2 increase the risk of developing PD while the N551K-R1398H haplotype is associated with conferring protection against developing PD. Here we report a study looking at the N551K and R1398H variants for the first time in the Malaysian population.

    METHODS: Cases (523) which conformed to the United Kingdom PD Brain Bank Criteria for PD were recruited through trained neurologists and age- and ethnically matched controls (491) were individuals free of any neurological disorder. The N551K and R1398H mutations were genotyped using the Taqman SNP genotyping assay.

    RESULTS: A significant protective association for N551K was found in those of Malay ancestry, with a protective trend seen for R1398H. A meta-analysis of Chinese individuals in this cohort with other published cohorts of Chinese ancestry indicated a significant protective role for N551K and R1398H.

    CONCLUSION: This study reports that the N551K-R1398H haplotype is also relevant to the Malaysian population, with a significant protective effect found in those of Malay and Chinese ancestries.

  7. Lautrup CK, Teik KW, Unzaki A, Mizumoto S, Syx D, Sin HH, et al.
    Mol Genet Genomic Med, 2020 May;8(5):e1197.
    PMID: 32130795 DOI: 10.1002/mgg3.1197
    BACKGROUND: Musculocontractural Ehlers-Danlos Syndrome (mcEDS) is a rare connective tissue disorder caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE), both of which result in defective dermatan sulfate biosynthesis. Forty-one patients with mcEDS-CHST14 and three patients with mcEDS-DSE have been described in the literature.

    METHODS: Clinical, molecular, and glycobiological findings in three additional patients with mcEDS-DSE were investigated.

    RESULTS: Three patients from two families shared craniofacial characteristics (hypertelorism, blue sclera, midfacial hypoplasia), skeletal features (pectus and spinal deformities, characteristic finger shapes, progressive talipes deformities), skin features (fine or acrogeria-like palmar creases), and ocular refractive errors. Homozygous pathogenic variants in DSE were found: c.960T>A/p.Tyr320* in patient 1 and c.996dupT/p.Val333Cysfs*4 in patients 2 and 3. No dermatan sulfate was detected in the urine sample from patient 1, suggesting a complete depletion of DS.

    CONCLUSION: McEDS-DSE is a congenital multisystem disorder with progressive symptoms involving craniofacial, skeletal, cutaneous, and cardiovascular systems, similar to the symptoms of mcEDS-CHST14. However, the burden of symptoms seems lower in patients with mcEDS-DSE.

Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links