Displaying all 9 publications

Abstract:
Sort:
  1. Aman S, Khan I, Ismail Z, Salleh MZ
    Neural Comput Appl, 2018;30(3):789-797.
    PMID: 30100679 DOI: 10.1007/s00521-016-2688-7
    Impacts of gold nanoparticles on MHD Poiseuille flow of nanofluid in a porous medium are studied. Mixed convection is induced due to external pressure gradient and buoyancy force. Additional effects of thermal radiation, chemical reaction and thermal diffusion are also considered. Gold nanoparticles of cylindrical shape are considered in kerosene oil taken as conventional base fluid. However, for comparison, four other types of nanoparticles (silver, copper, alumina and magnetite) are also considered. The problem is modeled in terms of partial differential equations with suitable boundary conditions and then computed by perturbation technique. Exact expressions for velocity and temperature are obtained. Graphical results are mapped in order to tackle the physics of the embedded parameters. This study mainly focuses on gold nanoparticles; however, for the sake of comparison, four other types of nanoparticles namely silver, copper, alumina and magnetite are analyzed for the heat transfer rate. The obtained results show that metals have higher rate of heat transfer than metal oxides. Gold nanoparticles have the highest rate of heat transfer followed by alumina and magnetite. Porosity and magnetic field have opposite effects on velocity.
  2. Al Husaini MAS, Habaebi MH, Gunawan TS, Islam MR, Elsheikh EAA, Suliman FM
    Neural Comput Appl, 2021 Aug 07.
    PMID: 34393379 DOI: 10.1007/s00521-021-06372-1
    Breast cancer is one of the most significant causes of death for women around the world. Breast thermography supported by deep convolutional neural networks is expected to contribute significantly to early detection and facilitate treatment at an early stage. The goal of this study is to investigate the behavior of different recent deep learning methods for identifying breast disorders. To evaluate our proposal, we built classifiers based on deep convolutional neural networks modelling inception V3, inception V4, and a modified version of the latter called inception MV4. MV4 was introduced to maintain the computational cost across all layers by making the resultant number of features and the number of pixel positions equal. DMR database was used for these deep learning models in classifying thermal images of healthy and sick patients. A set of epochs 3-30 were used in conjunction with learning rates 1 × 10-3, 1 × 10-4 and 1 × 10-5, Minibatch 10 and different optimization methods. The training results showed that inception V4 and MV4 with color images, a learning rate of 1 × 10-4, and SGDM optimization method, reached very high accuracy, verified through several experimental repetitions. With grayscale images, inception V3 outperforms V4 and MV4 by a considerable accuracy margin, for any optimization methods. In fact, the inception V3 (grayscale) performance is almost comparable to inception V4 and MV4 (color) performance but only after 20-30 epochs. inception MV4 achieved 7% faster classification response time compared to V4. The use of MV4 model is found to contribute to saving energy consumed and fluidity in arithmetic operations for the graphic processor. The results also indicate that increasing the number of layers may not necessarily be useful in improving the performance.
  3. Al-Betar MA, Alyasseri ZAA, Awadallah MA, Abu Doush I
    Neural Comput Appl, 2021;33(10):5011-5042.
    PMID: 32874019 DOI: 10.1007/s00521-020-05296-6
    In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains.
  4. Ravichandran BD, Keikhosrokiani P
    Neural Comput Appl, 2023;35(1):699-717.
    PMID: 36159189 DOI: 10.1007/s00521-022-07797-y
    The spread of Covid-19 misinformation on social media had significant real-world consequences, and it raised fears among internet users since the pandemic has begun. Researchers from all over the world have shown an interest in developing deception classification methods to reduce the issue. Despite numerous obstacles that can thwart the efforts, the researchers aim to create an automated, stable, accurate, and effective mechanism for misinformation classification. In this paper, a systematic literature review is conducted to analyse the state-of-the-art related to the classification of misinformation on social media. IEEE Xplore, SpringerLink, ScienceDirect, Scopus, Taylor & Francis, Wiley, Google Scholar are used as databases to find relevant papers since 2018-2021. Firstly, the study begins by reviewing the history of the issues surrounding Covid-19 misinformation and its effects on social media users. Secondly, various neuro-fuzzy and neural network classification methods are identified. Thirdly, the strength, limitations, and challenges of neuro-fuzzy and neural network approaches are verified for the classification misinformation specially in case of Covid-19. Finally, the most efficient hybrid method of neuro-fuzzy and neural networks in terms of performance accuracy is discovered. This study is wrapped up by suggesting a hybrid ANFIS-DNN model for improving Covid-19 misinformation classification. The results of this study can be served as a roadmap for future research on misinformation classification.
  5. Alamoodi AH, Albahri OS, Zaidan AA, Alsattar HA, Zaidan BB, Albahri AS
    Neural Comput Appl, 2023;35(8):6185-6196.
    PMID: 36415285 DOI: 10.1007/s00521-022-07998-5
    This research proposes a novel mobile health-based hospital selection framework for remote patients with multi-chronic diseases based on wearable body medical sensors that use the Internet of Things. The proposed framework uses two powerful multi-criteria decision-making (MCDM) methods, namely fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score method for criteria weighting and hospital ranking. The development of both methods is based on a Q-rung orthopair fuzzy environment to address the uncertainty issues associated with the case study in this research. The other MCDM issues of multiple criteria, various levels of significance and data variation are also addressed. The proposed framework comprises two main phases, namely identification and development. The first phase discusses the telemedicine architecture selected, patient dataset used and decision matrix integrated. The development phase discusses criteria weighting by q-ROFWZIC and hospital ranking by q-ROFDOSM and their sub-associated processes. Weighting results by q-ROFWZIC indicate that the time of arrival criterion is the most significant across all experimental scenarios with (0.1837, 0.183, 0.230, 0.276, 0.335) for (q = 1, 3, 5, 7, 10), respectively. Ranking results indicate that Hospital (H-4) is the best-ranked hospital in all experimental scenarios. Both methods were evaluated based on systematic ranking and sensitivity analysis, thereby confirming the validity of the proposed framework.
  6. Abiodun EO, Alabdulatif A, Abiodun OI, Alawida M, Alabdulatif A, Alkhawaldeh RS
    Neural Comput Appl, 2021;33(22):15091-15118.
    PMID: 34404964 DOI: 10.1007/s00521-021-06406-8
    Specialized data preparation techniques, ranging from data cleaning, outlier detection, missing value imputation, feature selection (FS), amongst others, are procedures required to get the most out of data and, consequently, get the optimal performance of predictive models for classification tasks. FS is a vital and indispensable technique that enables the model to perform faster, eliminate noisy data, remove redundancy, reduce overfitting, improve precision and increase generalization on testing data. While conventional FS techniques have been leveraged for classification tasks in the past few decades, they fail to optimally reduce the high dimensionality of the feature space of texts, thus breeding inefficient predictive models. Emerging technologies such as the metaheuristics and hyper-heuristics optimization methods provide a new paradigm for FS due to their efficiency in improving the accuracy of classification, computational demands, storage, as well as functioning seamlessly in solving complex optimization problems with less time. However, little details are known on best practices for case-to-case usage of emerging FS methods. The literature continues to be engulfed with clear and unclear findings in leveraging effective methods, which, if not performed accurately, alters precision, real-world-use feasibility, and the predictive model's overall performance. This paper reviews the present state of FS with respect to metaheuristics and hyper-heuristic methods. Through a systematic literature review of over 200 articles, we set out the most recent findings and trends to enlighten analysts, practitioners and researchers in the field of data analytics seeking clarity in understanding and implementing effective FS optimization methods for improved text classification tasks.
  7. Hamid TMTA, Sallehuddin R, Yunos ZM, Ali A
    Neural Comput Appl, 2023 Feb 02.
    PMID: 36747886 DOI: 10.1007/s00521-023-08244-2
    Discovering a hearing disorder at an earlier intervention is critical for reducing the effects of hearing loss and the approaches to increase the remaining hearing ability can be implemented to achieve the successful development of human communication. Recently, the explosive dataset features have increased the complexity for audiologists to decide the proper treatment for the patient. In most cases, data with irrelevant features and improper classifier parameters causes a crucial influence on the audiometry system in terms of accuracy. This is due to the dependent processes of these two, where the classification accuracy performance could be worsened if both processes are conducted independently. Although the filter algorithm is capable of eliminating irrelevant features, it still lacks the ability to consider feature reliance and results in a poor selection of significant features. Improper kernel parameter settings may also contribute to poor accuracy performance. In this paper, an ensemble filters feature selection based on Information Gain (IG), Gain Ratio (GR), Chi-squared (CS), and Relief-F (RF) with harmonize optimization of Particle Swarm Optimization (PSO) and Support Vector Machine (SVM) is presented to mitigate these problems. Ensemble filters are utilized so that the initial top dominant features relevant for classification can be considered. Then, PSO and SVM are optimized simultaneously to achieve the optimal solution. The results on a standard Audiology dataset show that the proposed method produces 96.50% accuracy with optimal solution compared to classical SVM, which signifies the proposed method is effective in handling high dimensional data for hearing disorder prediction.
  8. Murugappan M, Bourisly AK, Prakash NB, Sumithra MG, Acharya UR
    Neural Comput Appl, 2023;35(21):15343-15364.
    PMID: 37273912 DOI: 10.1007/s00521-023-08407-1
    Lung segmentation algorithms play a significant role in segmenting theinfected regions in the lungs. This work aims to develop a computationally efficient and robust deep learning model for lung segmentation using chest computed tomography (CT) images with DeepLabV3 + networks for two-class (background and lung field) and four-class (ground-glass opacities, background, consolidation, and lung field). In this work, we investigate the performance of the DeepLabV3 + network with five pretrained networks: Xception, ResNet-18, Inception-ResNet-v2, MobileNet-v2 and ResNet-50. A publicly available database for COVID-19 that contains 750 chest CT images and corresponding pixel-labeled images are used to develop the deep learning model. The segmentation performance has been assessed using five performance measures: Intersection of Union (IoU), Weighted IoU, Balance F1 score, pixel accu-racy, and global accuracy. The experimental results of this work confirm that the DeepLabV3 + network with ResNet-18 and a batch size of 8 have a higher performance for two-class segmentation. DeepLabV3 + network coupled with ResNet-50 and a batch size of 16 yielded better results for four-class segmentation compared to other pretrained networks. Besides, the ResNet with a fewer number of layers is highly adequate for developing a more robust lung segmentation network with lesser computational complexity compared to the conventional DeepLabV3 + network with Xception. This present work proposes a unified DeepLabV3 + network to delineate the two and four different regions automatically using CT images for CoVID-19 patients. Our developed automated segmented model can be further developed to be used as a clinical diagnosis system for CoVID-19 as well as assist clinicians in providing an accurate second opinion CoVID-19 diagnosis.
  9. Rahimi I, Chen F, Gandomi AH
    Neural Comput Appl, 2021 Feb 04.
    PMID: 33564213 DOI: 10.1007/s00521-020-05626-8
    The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links