Displaying all 3 publications

Abstract:
Sort:
  1. Lee HC, Tan KL, Cheah PS, Ling KH
    Neural Plast, 2016;2016:7434191.
    PMID: 26881131 DOI: 10.1155/2016/7434191
    Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition.
  2. Leong JW, Abdullah S, Ling KH, Cheah PS
    Neural Plast, 2016;2016:1951250.
    PMID: 27034842 DOI: 10.1155/2016/1951250
    MicroRNAs (miRNAs) are small noncoding RNA known to regulate brain development. The expression of two novel miRNAs, namely, miR-344b and miR-344c, was characterized during mouse brain developmental stages in this study. In situ hybridization analysis showed that miR-344b and miR-344c were expressed in the germinal layer during embryonic brain developmental stages. In contrast, miR-344b was not detectable in the adult brain while miR-344c was expressed exclusively in the adult olfactory bulb and cerebellar granular layer. Stem-loop RT-qPCR analysis of whole brain RNAs showed that expression of the miR-344b and miR-344c was increased as brain developed throughout the embryonic stage and maintained at adulthood. Further investigation showed that these miRNAs were expressed in adult organs, where miR-344b and miR-344c were highly expressed in pancreas and brain, respectively. Bioinformatics analysis suggested miR-344b and miR-344c targeted Olig2 and Otx2 mRNAs, respectively. However, luciferase experiments demonstrated that these miRNAs did not target Olig2 and Otx2 mRNAs. Further investigation on the locality of miR-344b and miR-344c showed that both miRNAs were localized in nuclei of immature neurons. In conclusion, miR-344b and miR-344c were expressed spatiotemporally during mouse brain developmental stages.
  3. Li P, Huang W, Chen Y, Aslam MS, Cheng W, Huang Y, et al.
    Neural Plast, 2023;2023:1474841.
    PMID: 37179843 DOI: 10.1155/2023/1474841
    PURPOSE: To explore the therapeutic efficiency of acupuncture and the related molecular mechanism of neural plasticity in depression.

    METHODS: Chronic unpredictable mild stress- (CUMS-) induced rats were established for the depression animal model. There were a total of four rat groups, including the control group, the CUMS group, the CUMS+acupuncture group, and the CUMS+fluoxetine group. The acupuncture group and the fluoxetine group were given a 3-week treatment after the modeling intervention. The researcher performed the open-field, elevated plus maze, and sucrose preference tests to evaluate depressive behaviors. The number of nerve cells, dendrites' length, and the prefrontal cortex's spine density were detected using Golgi staining. The prefrontal cortex expression, such as BDNF, PSD95, SYN, and PKMZ protein, was detected using the western blot and RT-PCR.

    RESULTS: Acupuncture could alleviate depressive-like behaviors and promote the recovery of the neural plasticity functions in the prefrontal cortex, showing the increasing cell numbers, prolonging the length of the dendrites, and enhancing the spine density. The neural plasticity-related proteins in the prefrontal cortex, including BDNF, PSD95, SYN, and PKMZ, were all downregulated in the CUMS-induced group; however, these effects could be partly reversed after being treated by acupuncture and fluoxetine (P < 0.05).

    CONCLUSION: Acupuncture can ameliorate depressive-like behaviors by promoting the recovery of neural plasticity functions and neural plasticity-related protein upregulation in the prefrontal cortex of CUMS-induced depressed rats. Our study provides new insights into the antidepressant approach, and further studies are warranted to elucidate the mechanisms of acupuncture involved in depression treatment.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links