Displaying all 5 publications

Abstract:
Sort:
  1. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    Open Life Sci, 2018 Jan;13:279-284.
    PMID: 33817094 DOI: 10.1515/biol-2018-0034
    Most studies highlight mesenchymal stem cells (MSCs) extracted primarily from bone marrow (BM), very few report the use of peripheral blood (PB), often due to the associated low seeding density and difficulties with extraction techniques. As ageing populations are becoming more predominant globally, together with escalating demands for MSC transplantation and tissue regeneration, obtaining quality MSCs suitable for induced differentiation and biological therapies becomes increasingly important. In this study, BM and PB were obtained from elderly patients and extracted MSCs grown in vitro to determine their successful isolation and expansion. Patients' socio-demographic background and other medical information were obtained from medical records. Successful and failed cultures were correlated with key demographic and medical parameters. A total of 112 samples (BM or PB) were used for this study. Of these, 50 samples (44.6%) were successfully cultured according to standardised criteria with no signs of contamination. Our comparative analyses demonstrated no statistical correlation between successful MSC cultures and any of the six demographic or medical parameters examined, including sample quantity, age, sex, race, habits and underlying comorbidities of sample donors. In conclusion, the present study demonstrates that typical demographics and comorbidities do not influence successful MSC isolation and expansion in culture.
  2. Liu Z, Li H, Gao D, Su J, Su Y, Ma Z, et al.
    Open Life Sci, 2022;17(1):1629-1640.
    PMID: 36567720 DOI: 10.1515/biol-2022-0516
    Ghee is a traditional Tibetan dairy product with high-fat content, low yield, plasticity, caseation, and rich nutrition. In this study, we analyzed the diversity of microbial communities in yak milk and ghee samples at high and low altitudes, especially the Lactobacillus genus, and further used metabolomic techniques to compare the differences in metabolites in yak ghee at different altitudes. The results showed that the increase in altitude had a significant and generally inhibitory effect on the microbial community diversity in milk ghee, and yak milk at high altitude was abundant in nutrients, which could antagonize the negative impact of increased altitude. Using non-targeted metabolomics, we infer the composition of flavor compounds in ghee: nine kinds of carboxylic acids, 11 kinds of esters, six kinds of ketones, two kinds of alcohols, and four kinds of alkene compounds, among which the key flavor compounds are dl-2-(acetylamino)-3-phenylephrine acid, 1-(4-methoxyphenyl)-2-propanone, sebacic acid, Lysope 18:1, and uracil 1-beta-d-arabinofuranoside. These flavor substances are found in Lactococcus, Lactobacillus, and Streptococcus. With the participation of Lactobacillus, it is synthesized through biosynthesis of alkaloids derived from ornithine, lysine, and nicotine acid and glyoxylate and decarboxylate metabolism, among which Lactococcus plays a key role. In this study, a variety of lactic acid bacteria related to ghee fermentation were screened out, revealing the composition of volatile flavor compounds in Gannan yak milk ghee in the Qinghai-Tibet Plateau and providing a reference for further key volatile flavor compounds and the formation mechanism of flavor compounds.
  3. Sreedharan DK, Alias H, Makhtar MMZ, Shun TJ, Mokhtar AMA, Shukor H, et al.
    Open Life Sci, 2024;19(1):20220809.
    PMID: 38283116 DOI: 10.1515/biol-2022-0809
    Bacteriocins produced by Bacillus subtilis have gained recognition for their safe use in humans. In this study, we aimed to assess the inhibitory activity of an antimicrobial peptide synthesized by the wild-type strain of B. subtilis against the notorious pathogen Pseudomonas aeruginosa. Our investigation employed the broth microdilution method to evaluate the inhibitory potential of this peptide. Among the four different pathogen strains tested, P. aeruginosa exhibited the highest susceptibility, with an inhibition rate of 29.62%. In parallel, we explored the cultivation conditions of B. subtilis, recognizing the potential of this versatile bacterium for applications beyond antimicrobial production. The highest inhibitory activity was achieved at pH 8, with an inhibition rate of 20.18%, indicating the potential for optimizing pH conditions for enhanced antimicrobial peptide production. For the kinetics of peptide production, the study explored different incubation periods and agitation levels. Remarkably, the highest activity of B. subtilis was observed at 24 h of incubation, with an inhibition rate of 44.93%. Finally, the study focused on the isolation of the antimicrobial peptide from the cell-free supernatant of B. subtilis using ammonium sulfate precipitation at various concentrations. The highest recorded activity was an impressive 89.72% achieved at an 80% concentration.
  4. Wicaksono A, Meitha K, Wan KL, Mat Isa MN, Parikesit AA, Molina J
    Open Life Sci, 2025;20(1):20221033.
    PMID: 39881826 DOI: 10.1515/biol-2022-1033
    Rafflesiaceae is a family of endangered plants whose members are solely parasitic to the tropical grape vine Tetrastigma (Vitaceae). Currently, the genetics of their crosstalk with the host remains unexplored. In this study, we use homology-based in silico approaches to characterize micro-RNAs (miRNAs) expressed by Sapria himalayana and Rafflesia cantleyi from published omics data. Derived from secondary structures or hairpins, miRNAs are small regulators of gene expression. We found that some plant-conserved miRNA still exists in Rafflesiaceae. Out of 9 highly conserved miRNA families in plants, 7 families (156/157, 159/319, 160, 165/166, 171, 172, 390) were identified with a total of 22 variants across Rafflesiaceae. Some miRNAs were missing endogenous targets and may have evolved to target host miRNA, though this requires experimental verification. Rafflesiaceae miRNA promoters are mostly inducible by ethylene that mediates stress response in the host but could be perceived by the parasites as a signal for growth. This study provides evidence that certain miRNAs with ancient origins in land plants still exist in Rafflesiaceae, though some may have been coopted by parasites to target host genes.
  5. Chukwuma OB, Rafatullah M, Kapoor RT, Tajarudin HA, Ismail N, Alam M, et al.
    Open Life Sci, 2025;20(1):20251066.
    PMID: 40059875 DOI: 10.1515/biol-2025-1066
    Lignocellulosic biomass, owing to its recalcitrant nature, requires a consortium of enzymes for its breakdown. The present study deals with the isolation of cellulolytic bacterial strains from landfill leachate collected from the Pulau Burung landfill site of Penang, Malaysia, and consortia were constructed to test their cellulolytic efficiency. The dinitro salicylate method was used for the estimation of enzyme activity, and consortia were compared with promising bacterial strains. The combined potential of promising bacterial strains was optimized at varying experimental conditions to detect their maximum cellulolytic activity. The results showed that eight bacterial strains reflected hydrolytic activities, and these were identified by 16S rDNA sequence as Bacillus subtilis, Bacillus pumilus, Bacillus proteolyticus, Bacillus paramycoides, Bacillus cereus, Bacillus altitudinis, Bacillus niacin, and Bacillus thuringiensis. Consortia A included Bacillus proteolyticus, Bacillus subtilis, Bacillus pumilus, and Bacillus paramycoides and reflected high thermophilic inclination as the optimal temperature was 45°C at pH 6 with the highest cellulase activity of 0.90 U/ml. Consortia B included Bacillus cereus, Bacillus altitudinis, Bacillus niacin, and Bacillus thuringiensis and showed a cellulase activity of 0.78 U/ml at 38°C and pH 6. The results reflected the significant potential of these Bacillus strains and consortia in the breakdown of cellulose into useful end products. The consortia further proved that a synergistic relationship was more favourable for bioconversion processes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links