Displaying all 2 publications

Abstract:
Sort:
  1. Westbury MV, Barnett R, Sandoval-Velasco M, Gower G, Vieira FG, de Manuel M, et al.
    Open Res Eur, 2021 Jun 21;1:25.
    PMID: 35098251 DOI: 10.12688/openreseurope.13104.2
    Background: The evolutionary relationships of Felidae during their Early-Middle Miocene radiation is contentious. Although the early common ancestors have been subsumed under the grade-group Pseudaelurus, this group is thought to be paraphyletic, including the early ancestors of both modern cats and extinct sabretooths.

    Methods: Here, we sequenced a draft nuclear genome of Smilodon populator, dated to 13,182 ± 90 cal BP, making this the oldest palaeogenome from South America to date, a region known to be problematic for ancient DNA preservation. We analysed this genome, together with genomes from other extinct and extant cats to investigate their phylogenetic relationships.

    Results: We confirm a deep divergence (~20.65 Ma) within sabretoothed cats. Through the analysis of both simulated and empirical data, we show a lack of gene flow between Smilodon and contemporary Felidae.

    Conclusions: Given that some species traditionally assigned to Pseudaelurus originated in the Early Miocene ~20 Ma, this indicates that some species of Pseudaelurus may be younger than the lineages they purportedly gave rise to, further supporting the hypothesis that Pseudaelurus was paraphyletic.

  2. Mohd Tohir MZ, Martín-Gómez C
    Open Res Eur, 2023;3:178.
    PMID: 38370026 DOI: 10.12688/openreseurope.16538.1
    BACKGROUND: In the near future, the rapid adoption of electric vehicles is inevitable, driven by environmental concerns and climate change awareness. However, this progressive trend also brings forth safety concerns and hazards, notably regarding the risk of EV fires, which have garnered significant media attention. This necessitates the need to study for comprehensive fire risk assessment strategies aimed at preventing and mitigating such incidents.

    METHODS: This study presents a framework for assessing fire risks in EVs using Fault Tree Analysis (FTA). By integrating disparate data sources into a unified dataset, the proposed methodology offers a holistic approach to understanding potential hazards. The study embarked on a comprehensive exploration of EV fire causes through qualitative FTA.

    RESULTS: Through this approach, the work discerned five major causes: human factors, vehicle factors, management factors, external factors, and unknown factors. Using a meticulous weighted average approach, the annual EV fire frequency for each country was deduced, revealing an average annual EV fire rate of 2.44 × 10 -4 fires per registered EV. This metric provides a significant benchmark, reflecting both the probability and inherent risk of such incidents. However, uncertainties in data quality and reporting discrepancies highlight the imperative of continued research.

    CONCLUSIONS: As EV adoption surges, this study underscores the importance of comprehensive, data-driven insights for proactive risk management, emphasizing the necessity for vigilant and adaptive strategies. The findings emphasize the pivotal role of this assessment in shaping response strategies, particularly for first responders dealing with EV fires. In essence, this research not only elevates the understanding of EV fire risks but also offer a foundation for future safety measures and policies in the domain.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links