Displaying all 11 publications

Abstract:
Sort:
  1. Lai SL, Wong PF, Lim TK, Lin Q, Mustafa MR
    Proteomics, 2015 May;15(9):1608-21.
    PMID: 25594392 DOI: 10.1002/pmic.201400039
    Melanoma is a lethal form of skin cancer with rising global incidence. However, limited treatment options are available for advanced melanoma and this is further compounded by the development of resistance toward existing drugs. Panduratin A (PA), a cyclohexanyl chalcone found in Boesenbergia rotunda, was investigated for its cytotoxic potentials against human malignant melanoma A375 cells. Our initial findings revealed that mitochondrion is the primary acting site of PA on A375 cancer cells and the cytotoxic mechanisms of PA were further investigated using a temporal quantitative proteomics approach by iTRAQ 2D-LC-MS/MS. Comprehensive proteomics analysis identified 296 proteins that were significantly deregulated in PA-treated A375 cells and revealed the involvement of mitochondrial oxidative phosphorylation, secretory and ER stress pathway, and apoptosis. We further confirmed that the PA-induced apoptosis was mediated by prolonged ER stress at least in part via the PERK/eIF2α/ATF4/CHOP pathway. Pretreatment with cycloheximide, an ER stress inhibitor rescued PA-induced cell death, which was accompanied by the suppression of ER-stress-related HSPA5 and CHOP proteins. The present study provides comprehensive mechanistic insights into the cytotoxic mechanisms of PA.
    Matched MeSH terms: Proteomics
  2. Chong K, Joshi S, Jin LT, Shu-Chien AC
    Proteomics, 2006 Apr;6(7):2251-8.
    PMID: 16385477
    The discus fish (Symphysodon aequifasciata) is a cichlid demonstrating advanced mode of parental care towards fry. Both male and female fish utilized epidermal mucus secreted from specialized epidermal cells to feed developing fry. We utilized proteomics to compare protein profile from parental and nonparental fish. Gel analysis revealed a total of 35 spots that were up-regulated in parental mucus. In tandem, another 18 spots were uniquely expressed in parental mucus. MS analysis of these spots identified proteins such as fructose biphosphate aldolase, nucleoside diphosphate kinase, and heat shock proteins, which are essential to support energy provision, cell repair and proliferation, stress mediation, and defense mechanism in parental fish during parental-care period. Concurrently, the detection of several antioxidant-related proteins such as thioredoxin peroxidase and hemopexin suggests a need to overcome oxidative stress during hypermucosal production in parental-care behavior. A C-type lectin was also found to be uniquely expressed in parental mucus and could have important role in providing antimicrobial defense to both parental fish and fry. In summary, our study shows that discus mucus proteome undergoes changes in protein expression during parental-care period.
    Matched MeSH terms: Proteomics*
  3. Mittal P, Klingler-Hoffmann M, Arentz G, Winderbaum L, Lokman NA, Zhang C, et al.
    Proteomics, 2016 06;16(11-12):1793-801.
    PMID: 27061135 DOI: 10.1002/pmic.201500455
    Metastasis is a crucial step of malignant progression and is the primary cause of death from endometrial cancer. However, clinicians presently face the challenge that conventional surgical-pathological variables, such as tumour size, depth of myometrial invasion, histological grade, lymphovascular space invasion or radiological imaging are unable to predict with accuracy if the primary tumour has metastasized. In the current retrospective study, we have used primary tumour samples of endometrial cancer patients diagnosed with (n = 16) and without (n = 27) lymph node metastasis to identify potential discriminators. Using peptide matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI), we have identified m/z values which can classify 88% of all tumours correctly. The top discriminative m/z values were identified using a combination of in situ sequencing and LC-MS/MS from digested tumour samples. Two of the proteins identified, plectin and α-Actin-2, were used for validation studies using LC-MS/MS data independent analysis (DIA) and immunohistochemistry. In summary, MALDI-MSI has the potential to identify discriminators of metastasis using primary tumour samples.
  4. Tan GM, Lim HJ, Yeow TC, Movahed E, Looi CY, Gupta R, et al.
    Proteomics, 2016 05;16(9):1347-60.
    PMID: 27134121 DOI: 10.1002/pmic.201500219
    Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.
    Matched MeSH terms: Proteomics/methods
  5. Megat Mohd Azlan PI, Chin SF, Low TY, Neoh HM, Jamal R
    Proteomics, 2019 05;19(10):e1800176.
    PMID: 30557447 DOI: 10.1002/pmic.201800176
    Dysbiosis of gut microbiome can contribute to inflammation, and subsequently initiation and progression of colorectal cancer (CRC). Throughout these stages, various proteins and metabolites are secreted to the external environment by microorganisms or the hosts themselves. Studying these proteins may help enhance our understanding of the host-microorganism relationship or they may even serve as useful biomarkers for CRC. However, secretomic studies of gut microbiome of CRC patients, until now, are scarcely performed. In this review article, the focus is on the roles of gut microbiome in CRC, the current findings on CRC secretome are highlighted, and the emerging challenges and strategies to drive forward this area of research are addressed.
    Matched MeSH terms: Proteomics
  6. Briggs MT, Condina MR, Ho YY, Everest-Dass AV, Mittal P, Kaur G, et al.
    Proteomics, 2019 11;19(21-22):e1800482.
    PMID: 31364262 DOI: 10.1002/pmic.201800482
    Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N-glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor-specific N-glycan alterations in ovarian cancer development and progression. matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N-glycan distribution on formalin-fixed paraffin-embedded ovarian cancer tissue sections from early- and late-stage patients. Tumor-specific N-glycans are identified and structurally characterized by porous graphitized carbon-liquid chromatography-electrospray ionization-tandem mass spectrometry (PGC-LC-ESI-MS/MS), and then assigned to high-resolution images obtained from MALDI-MSI. Spatial distribution of 14 N-glycans is obtained by MALDI-MSI and 42 N-glycans (including structural and compositional isomers) identified and structurally characterized by LC-MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N-glycan families are localized to the tumor regions of late-stage ovarian cancer patients relative to early-stage patients. Potential N-glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3 (GlcNAc)2 , and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3 (GlcNAc)2 . The distribution of these markers is evaluated using a tissue microarray of early- and late-stage patients.
  7. Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M, et al.
    Proteomics, 2021 05;21(10):e2000279.
    PMID: 33860983 DOI: 10.1002/pmic.202000279
    While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)-based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS-CoV-2-mediated infections in humans. Comparative analysis of cell-lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS-CoV-2 infection is still incomplete and the tissue-specific response to SARS-CoV-2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross-comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K-Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS-CoV-2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS-CoV-2 responsive age-, gender-dependent, tissue-specific protein targets.
    Matched MeSH terms: Proteomics/methods*
  8. Ujang J, Sani AAA, Lim BH, Noordin R, Othman N
    Proteomics, 2018 12;18(23):e1700397.
    PMID: 30284757 DOI: 10.1002/pmic.201700397
    Entamoeba histolytica membrane proteins are important players toward the pathogenesis of amoebiasis, but the roles of most of the proteins are not fully understood. Since efficient protein extraction method is crucial for a successful MS analysis, three extractions methods are evaluated for the use in studying the membrane proteome of E. histolytica: Two commercial kits (ProteoExtract from Calbiochem and ProteoPrep from Sigma), and a conventional laboratory method. The results show that ProteoExtract and the conventional method gave higher protein yields compared to ProteoPrep. LC-ESI-MS/MS identifies 456, 482, and 551 membrane fraction proteins extracted using ProteoExtract, ProteoPrep, and a conventional method, respectively. In silico analysis predicts 108 (21%), 235 (45%), and 177 (34%) membrane proteins from the extracts of ProteoExtract, ProteoPrep, and the conventional method, respectively. Furthermore, analysis of the cytosolic and membrane fractions shows the highest selectivity of the membrane proteins using the ProteoPrep extraction kit. Overall, this study reports 828 E. histolytica membrane fraction proteins that include 249 predicted membrane proteins. The data are available via ProteomeXchange with identifier PXD010171.
    Matched MeSH terms: Proteomics/methods*
  9. Low TY, Mohtar MA, Ang MY, Jamal R
    Proteomics, 2019 05;19(10):e1800235.
    PMID: 30431238 DOI: 10.1002/pmic.201800235
    Understanding the relationship between genotypes and phenotypes is essential to disentangle biological mechanisms and to unravel the molecular basis of diseases. Genes and proteins are closely linked in biological systems. However, genomics and proteomics have developed separately into two distinct disciplines whereby crosstalk among scientists from the two domains is limited and this constrains the integration of both fields into a single data modality of useful information. The emerging field of proteogenomics attempts to address this by building bridges between the two disciplines. In this review, how genomics and transcriptomics data in different formats can be utilized to assist proteogenomics application is briefly discussed. Subsequently, a much larger part of this review focuses on proteogenomics research articles that are published in the last five years that answer two important questions. First, how proteogenomics can be applied to tackle biological problems is discussed, covering genome annotation and precision medicine. Second, the latest developments in analytical technologies for data acquisition and the bioinformatics tools to interpret and visualize proteogenomics data are covered.
  10. Lim LC, Lim YM
    Proteomics, 2018 02;18(3-4).
    PMID: 29316255 DOI: 10.1002/pmic.201700169
    Tumor heterogeneity is an important feature of colorectal cancer (CRC) manifested by dynamic changes in gene expression, protein expression, and availability of different tumor subtypes. Recent publications in the past 10 years have revealed proteome heterogeneity between different colorectal tumors and within the same tumor site. This paper reviews recent research works on the proteome heterogeneity in CRC, which includes the heterogeneity within a single tumor (intratumor heterogeneity), between different anatomical sites at the same organ, and between primary and metastatic sites (intertumor heterogeneity). The potential use of proteome heterogeneity in precision medicine and its implications in biomarker discovery and therapeutic outcomes will be discussed. Identification of the unique proteome landscape between and within individual tumors is imperative for understanding cancer biology and the management of CRC patients.
    Matched MeSH terms: Proteomics
  11. Low TY
    Proteomics, 2023 Nov;23(21-22):e2300209.
    PMID: 37986683 DOI: 10.1002/pmic.202300209
    Most proteins function by forming complexes within a dynamic interconnected network that underlies various biological mechanisms. To systematically investigate such interactomes, high-throughput techniques, including CF-MS, have been developed to capture, identify, and quantify protein-protein interactions (PPIs) on a large scale. Compared to other techniques, CF-MS allows the global identification and quantification of native protein complexes in one setting, without genetic manipulation. Furthermore, quantitative CF-MS can potentially elucidate the distribution of a protein in multiple co-elution features, informing the stoichiometries and dynamics of a target protein complex. In this issue, Youssef et al. (Proteomics 2023, 00, e2200404) combined multiplex CF-MS and a new algorithm to study the dynamics of the PPI network for Escherichia coli grown under ten different conditions. Although the results demonstrated that most proteins remained stable, the authors were able to detect disrupted interactions that were growth condition specific. Further bioinformatics analyses also revealed the biophysical properties and structural patterns that govern such a response.
    Matched MeSH terms: Proteomics/methods
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links