Displaying all 10 publications

Abstract:
Sort:
  1. Vakili M, Rafatullah M, Ibrahim MH, Abdullah AZ, Salamatinia B, Gholami Z
    PMID: 24984835 DOI: 10.1007/978-3-319-06746-9_3
    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent.
  2. Jie Y, Isa ZM, Jie X, Ju ZL, Ismail NH
    PMID: 23625129 DOI: 10.1007/978-1-4614-6898-1_2
    In this review, our aim was to examine the influence of geographic variations on asthma prevalence and morbidity among adults, which is important for improving our understanding, identifying the burden, and for developing and implementing interventions aimed at reducing asthma morbidity. Asthma is a complex inflammatory disease of multifactorial origin, and is influenced by both environmental and genetic factors. The disparities in asthma prevalence and morbidity among the world's geographic locations are more likely to be associated with environmental exposures than genetic differences. In writing this article, we found that the indoor factors most consistently associated with asthma and asthma-related symptoms in adults included fuel combustion, mold growth, and environmental tobacco smoke in both urban and rural areas. Asthma and asthma-related symptoms occurred more frequently in urban than in rural areas, and that difference correlated with environmental risk exposures, SES, and healthcare access. Environmental risk factors to which urban adults were more frequently exposed than rural adults were dust mites,high levels of vehicle emissions, and a westernized lifestyle.Exposure to indoor biological contaminants in the urban environment is common.The main risk factors for developing asthma in urban areas are atopy and allergy to house dust mites, followed by allergens from animal dander. House dust mite exposure may potentially explain differences in diagnosis of asthma prevalence and morbidity among adults in urban vs. rural areas. In addition, the prevalence of asthma morbidity increases with urbanization. High levels of vehicle emissions,Western lifestyles and degree of urbanization itself, may affect outdoor and thereby indoor air quality. In urban areas, biomass fuels have been widely replaced by cleaner energy sources at home, such as gas and electricity, but in most developing countries, coal is still a major source of fuel for cooking and heating, particularly in winter. Moreover, exposure to ETS is common at home or at work in urban areas.There is evidence that asthma prevalence and morbidity is less common in rural than in urban areas. The possible reasons are that rural residents are exposed early in life to stables and to farm milk production, and such exposures are protective against developing asthma morbidity. Even so, asthma morbidity is disproportionately high among poor inner-city residents and in rural populations. A higher proportion of adult residents of nonmetropolitan areas were characterized as follows:aged 55 years or older, no previous college admission, low household income, no health insurance coverage, and could not see a doctor due to healthcare service availability, etc. In rural areas, biomass fuels meet more than 70% of the rural energy needs. Progress in adopting modern energy sources in rural areas has been slow. The most direct health impact comes from household energy use among the poor, who depend almost entirely on burning biomass fuels in simple cooking devices that are placed in inadequately ventilated spaces. Prospective studies are needed to assess the long-term effects of biomass smoke on lung health among adults in rural areas.Geographic differences in asthma susceptibility exist around the world. The reason for the differences in asthma prevalence in rural and urban areas may be due to the fact that populations have different lifestyles and cultures, as well as different environmental exposures and different genetic backgrounds. Identifying geographic disparities in asthma hospitalizations is critical to implementing prevention strategies,reducing morbidity, and improving healthcare financing for clinical asthma treatment. Although evidence shows that differences in the prevalence of asthma do exist between urban and rural dwellers in many parts of the world, including in developed countries, data are inadequate to evaluate the extent to which different pollutant exposures contribute to asthma morbidity and severity of asthma between urban and rural areas.
  3. Hajeb P, Jinap S, Ismail A, Mahyudin NA
    PMID: 22610296 DOI: 10.1007/978-1-4614-3414-6_2
    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to humans in Malaysia will be useful in establishing the levels at which detrimental effects in both humans and marine life may occur, and therefore the levels at which warning should be raised or limits established. In particular, we believe that two or three monitoring centers should be established in Peninsular Malaysia, and one in East Malaysia for the specific purpose of monitoring for the presence of hazardous environmental chemicals, and particularly monitoring for heavy metals such as mercury that reach food that is subject to consistent human consumption.
  4. Rahman MT, De Ley M
    Rev Environ Contam Toxicol, 2017;240:151-168.
    PMID: 27115674 DOI: 10.1007/398_2016_2
    Human exposure to arsenic (As) can lead to oxidative stress that can become evident in organs such as the skin, liver, kidneys and lungs. Several intracellular antioxidant defense mechanisms including glutathione (GSH) and metallothionein (MT) have been shown to minimize As cytotoxicity. The current review summarizes the involvement of MT as an intracellular defense mechanism against As cytotoxicity, mostly in blood. Zinc (Zn) and selenium (Se) supplements are also proposed as a possible remediation of As cytotoxicity. In vivo and in vitro studies on As toxicity were reviewed to summarize cytotoxic mechanisms of As. Intracellular antioxidant defense mechanisms of MT are linked in relation to As cytotoxicity. Arsenic uses a different route, compared to major metal MT inducers such as Zn, to enter/exit blood cells. A number of in vivo and in vitro studies showed that upregulated MT biosynthesis in blood components are related to toxic levels of As. Despite the cysteine residues in MT that aid to bind As, MT is not the preferred binding protein for As. Nonetheless, intracellular oxidative stress due to As toxicity can be minimized, if not eliminated, by MT. Thus MT induction by essential metals such as Zn and Se supplementation could be beneficial to fight against As toxicity.
  5. Kannan K, Tanabe S, Giesy JP, Tatsukawa R
    PMID: 9297984
    Public concern about the adverse environmental and human health impacts of organochlorine contaminants led to strict regulations on their use in developed nations two decades ago. Nevertheless, DDT and several other organochlorine insecticides are still being used for agriculture and public health programs in developing countries in Asia and the South Pacific. As a consequence, humans in this region are exposed to greater dietary levels of organochlorines. In this review, published information on organochlorine concentrations in foodstuffs from South and Southeast Asia and Oceanic countries has been compiled. Foodstuffs that contribute to human exposures and dietary intakes of organochlorines were examined, and the data compared with those reported from more developed nations. Among various developing countries in Asia, considerable information on organochlorines in foodstuffs has been available from India since the late 1960s. DDT and HCH were the major insecticides in Indian foodstuffs. Concentrations of these insecticides have declined more than two orders of magnitude in farm products, such as food grains and vegetables, in two decades. Milk and milk products are the major sources of dietary exposure to DDT and HCH in India. The residues of these insecticides in dairy products were close to or above the MRLs of the FAO/WHO. Dietary intake of DDT and HCH by Indians was > 100 fold that in more developed nations. Sporadic incidences of greater concentrations (> 1 microgram/g) of aldrin, dieldrin, and heptachlor have been measured in Indian vegetables. Untreated surface waters could be a potential source of DDT and HCH exposure. In most Southeast Asian countries DDT was the common contaminant in animal origin foodstuffs. The higher percentage of p,p'-DDT in meat and fish from Southeast Asian countries, except Japan and Korea, indicated the recent use of DDt in vector control operations. Dietary intakes of DDt and HCH in Southeast Asia were an order of magnitude less than those of Indians but 5- to 10 fold greater than in more developed nations. In addition to DDT, aldrin and dieldrin were prominent in meat collected from Thailand and Malaysia. Aquatic food products from more industrialized countries, such as Japan, South Korea, Hong Kong, and Taiwan, contained significant levels of PCBs. In South Pacific countries, particularly in Australia and New Zealand, chlordanes and PCBs were the most prevalent organochlorines in foodstuffs. Food contamination by DDT, HCH, aldrin, and dieldrin was less than in developing countries in Asia but greater than in the U.S. and Japan. Intake of PCBs in Australia was greater than in the U.S. Meat and fish were the major sources of organochlorine exposure by Australians. Human dietary intake of organochlorines has been declining more slowly in developing countries in Asia. Current intakes were at least 5- to 100 fold greater than those in more developed nations, suggesting a greater risk from organochlorine exposure. Factors such as malnutrition, common among rural poor in developing nations, can increase these risks. Of greatest concern is the magnitude of exposure to organochlorines to which infants and children are subjected through human and dairy milk. The estimated intake of DDT by infants was at least 100 fold greater than the ADI of the FAO/WHO. In addition to DDT, excessive exposures to HCH and dieldrin may cause potential health effects in infants because they are more vulnerable to toxic effects. The design and implementation of appropriate epidemiological studies and their integration with monitoring of human, food, and environmental samples would be a major step in assessing the risks of organochlorine residues in foods and controlling or eliminating them. With the continued globalization of trade in food products, and the concomitant risk that food contaminated through point-source pollution may be widely distributed, identification of sources and their control should be matters of
  6. Hakeem KR, Sabir M, Ozturk M, Akhtar MS, Ibrahim FH
    Rev Environ Contam Toxicol, 2017;242:183-217.
    PMID: 27734212 DOI: 10.1007/398_2016_11
    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods used to determine nitrogen use efficincy (NUE), determine NUE for the major cereals grown across large agroclimatic regions, determine the key factors that control NUE, and finally analyze various strategies available to improve the use efficiency of fertilizer nitrogen.
  7. Kaw HY, Kannan N
    Rev Environ Contam Toxicol, 2017;242:153-181.
    PMID: 27807635 DOI: 10.1007/398_2016_14
    Malaysia is a developing country in Southeast Asia, with rapid industrial and economic growth. Speedy population growth and aggressive consumerism in the past five decades have resulted in environmental pollution issues, including products containing polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). PCBs and PBDEs are classified as persistent organic pollutants (POPs) by the Stockholm Convention due to their persistence, bioaccumulation in the environment and toxicity to humans and wildlife. These compounds are known to cause liver dysfunction, thyroid toxicity, developmental neuro-toxicity and possibly cancer. PCBs in air, mussels, pellets, seawater, fresh water, and human breast milk samples were analyzed in Malaysia, while studies on the pollution level of PBDEs in Malaysia were conducted on mussels, soils, leachate and sediment samples. PCBs in breast milk collected from Malaysia was the highest among Asian developing countries, with mean concentration of 80 ng/g lipid weight. On the other hand, the mean concentration of PCBs in mussels collected from Malaysia recorded the second lowest, with 56 ng/g and 89 ng/g lipid weight in two studies respectively. The concentrations of PBDEs in mussels taken from Malaysia fall in the range of 0.84-16 ng/g lipid weight, which is considerably low compared to 104.5 ng/g lipid weight in Philippines and 90.59 ng/g in Korea. Nevertheless, there are limited studies on these compounds in Malaysia, particularly there is no research on PBDEs in breast milk and sediment samples. This review will summarize the contamination levels of PCBs and PBDEs in different samples collected from Asian countries since 1988 until 2010 with a focus on Malaysia and will provide needed information for further research in this field.
  8. Wan JK, Chu WL, Kok YY, Lee CS
    PMID: 29872923 DOI: 10.1007/398_2018_14
    Plastics, with their many useful physical and chemical properties, are widely used in various industries and activities of daily living. Yet, the insidious effects of plastics, particularly long-term effects on aquatic organisms, are not properly understood. Plastics have been shown to degrade to micro- and nanosize particles known as microplastics and nanoplastics, respectively. These minute particles have been shown to cause various adverse effects on aquatic organisms, ranging from growth inhibition, developmental delay and altered feeding behaviour in aquatic animals to decrease of photosynthetic efficiency and induction of oxidative stress in microalgae. This review paper covers the distribution of microplastics and nanoplastics in aquatic ecosystems, focusing on their effects on microalgae as well as co-toxicity of microplastics and nanoplastics with other pollutants. Besides that, this review paper also discusses future research directions which could be taken to gain a better understanding of the impacts of microplastics and nanoplastics on aquatic ecosystems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links