Displaying all 4 publications

  1. Ogawa S, Ramadasan PN, Goschorska M, Anantharajah A, Ng KW, Parhar IS
    J. Comp. Neurol., 2012 Sep 1;520(13):2991-3012.
    PMID: 22430310 DOI: 10.1002/cne.23103
    The tachykinins are a family of neuropeptides, including substance P (SP), neurokinin A (NKA), and neurokinin B (NKB), that are encoded by the tac1 (SP and NKA) or tac2/3 (NKB) genes. Tachykinins are widely distributed in the central nervous system and have roles as neurotransmitters and/or neuromodulators. Recent studies in mammals have demonstrated the coexpression of NKB and kisspeptin and their comodulatory roles over the control of reproduction. We have recently identified two kisspeptin-encoding genes, kiss1 and kiss2, in teleosts. However, such relationship between tachykinins and kisspeptins has not been demonstrated in non-mammalian species. To determine the involvement of tachykinins in the reproduction in teleosts, we identified tac1 and two tac2 (tac2a and tac2b) sequences in the zebrafish genome using in silico data mining. Zebrafish tac1 encodes SP and NKA, whereas the tac2 sequences encode NKB and an additional peptide homologous to NKB (NKB-related peptide). Digoxigenin in situ hybridization in the brain of zebrafish showed tac1 mRNA-containing cells in the olfactory bulb, telencephalon, preoptic region, hypothalamus, mesencephalon, and rhombencephalon. The zebrafish tac2a mRNA-containing cells were observed in the preoptic region, habenula, and hypothalamus, whereas the tac2b mRNA-containing cells were predominantly observed in the dorsal telencephalic area. Furthermore, we examined the coexpression of tachykinins and two kisspeptin genes in the brain of zebrafish. Dual fluorescent in situ hybridization showed no coexpression of tachykinins mRNA with kisspeptins mRNA in hypothalamic nuclei or the habenula. These results suggest the presence of independent pathways for kisspeptins and NKB neurons in the brain of zebrafish.
  2. Hang CY, Kitahashi T, Parhar IS
    J. Comp. Neurol., 2014 Dec 1;522(17):3847-60.
    PMID: 25043553 DOI: 10.1002/cne.23645
    In addition to vision, light information is used to regulate a range of animal physiology. Such nonimage-forming functions of light are mediated by nonvisual photoreceptors expressed in distinct neurons in the retina and the brain in most vertebrates. A nonvisual photoreceptor vertebrate ancient long opsin (VAL-opsin) possesses two functional isoforms in the zebrafish, encoded by valopa and valopb, which has received little attention. To delineate the neurochemical identities of valop cells and to test for colocalization of the valop isoforms, we used in situ hybridization to characterize the expression of the valop genes along with that of neurotransmitters and a neuropeptide known to be present at the sites of valop expression. Double labeling showed that the thalamic valop population coexpresses valopa and valopb. All the thalamic valop cells overlapped with a GABAergic cell mass that continues from the anterior nucleus to the intercalated thalamic nucleus. A novel valopa cell population found in the superior raphe was serotonergic in nature. A valopb cell population in the Edinger-Westphal nucleus was identified as containing thyrotropin-releasing hormone. Valopb cells localized in the hindbrain intermediate reticular formation were noncholinergic in nature (nonmotorneurons). Thus, the presence of valop cell populations in different brain regions with coexpression of neurotransmitters and neuropeptides and the colocalization of valop isoforms in the thalamic cell population indicate regulatory and functional complexity of VAL-opsin in the brain of the zebrafish.
  3. Ogawa S, Sivalingam M, Biran J, Golan M, Anthonysamy RS, Levavi-Sivan B, et al.
    J. Comp. Neurol., 2016 10 01;524(14):2753-75.
    PMID: 26917324 DOI: 10.1002/cne.23990
    In vertebrates, gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH), respectively, regulate reproduction in positive and negative manners. GnIH belongs to the LPXRFa family of peptides previously identified in mammalian and nonmammalian vertebrates. Studying the detailed distribution of LPXRFa as well as its receptor (LPXRFa-R) in the brain and pituitary is important for understanding their multiple action sites and potential functions. However, the distribution of LPXRFa and LPXRFa-R has not been studied in teleost species, partially because of the lack of fish-specific antibodies. Therefore, in the present study, we generated specific antibodies against LPXRFa and its receptor from Nile tilapia (Oreochromis niloticus), and examined their distributions in the brain and pituitary by immunohistochemistry. Tilapia LPXRFa-immunoreactive neurons lie in the posterior ventricular nucleus of the caudal preoptic area, whereas LPXRFa-R-immunoreactive cells are distributed widely. Double immunofluorescence showed that neither LPXRFa-immunoreactive fibers nor LPXRFa-R is closely associated or coexpressed with GnRH1, GnRH3, or kisspeptin (Kiss2) neurons. In the pituitary, LPXRFa fibers are closely associated with gonadotropic endocrine cells [expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH)], with adrenocorticomelanotropic cells [corticotropin (ACTH) and α-melanotropin (α-MSH)], and with somatolactin endocrine cells. In contrast, LPXRFa-R are expressed only in LH, ACTH, and α-MSH cells. These results suggest that LPXRFa and LPXRFa-R signaling acts directly on the pituitary cells independent from GnRH or kisspeptin and could play multiple roles in reproductive and nonreproductive functions in teleosts. J. Comp. Neurol. 524:2753-2775, 2016. © 2016 Wiley Periodicals, Inc.
  4. Adli DS, Stuesse SL, Cruce WL
    J. Comp. Neurol., 1999 Feb 15;404(3):387-407.
    PMID: 9952355
    Over 30 nuclei have been identified in the reticular formation of rats, but only a small number of distinct reticular nuclei have been recognized in frogs. We used immunohistochemistry, retrograde tracing, and cell morphology to identify nuclei within the brainstem of Rana pipiens. FluoroGold was injected into the spinal cord, and, in the same frogs, antibodies to enkephalin, substance P, somatostatin, and serotonin were localized in adjacent sections. We identified many previously unrecognized reticular nuclei. The rhombencephalic reticular formation contained reticularis (r.) dorsalis; r. ventralis, pars alpha and pars beta; r. magnocellularis; r. parvocellularis; r. gigantocellularis; r. paragigantocellularis lateralis and dorsalis; r. pontis caudalis, pars alpha and pars beta; nucleus visceralis secundarius; r. pontis oralis, pars medialis and pars lateralis; raphe obscurus; raphe pallidus; raphe magnus; and raphe pontis. The mesencephalic reticular formation contained locus coeruleus-subcoeruleus, r. cuneiformis, r. subcuneiformis, raphe dorsalis-raphe centralis superior, and raphe linearis. Thus, the reticular formation of frog, which is an anamniote, is organized complexly and is similar to the reticular formation in amniotes. Because many of these nuclei may be homologous to reticular nuclei in mammals, we used mammalian terminology for frog reticular nuclei.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links