METHODS: In this international, community-based cohort study, we prospectively enrolled adults aged 35-70 years who had no intention of moving residences for 4 years from rural and urban communities across 17 countries. A portable spirometer was used to assess FEV1. FEV1 values were standardised within countries for height, age, and sex, and expressed as a percentage of the country-specific predicted FEV1 value (FEV1%). FEV1% was categorised as no impairment (FEV1% ≥0 SD from country-specific mean), mild impairment (FEV1% <0 SD to -1 SD), moderate impairment (FEV1%
METHODS: In this large-scale prospective cohort study, we recruited adults aged between 35 years and 70 years from 367 urban and 302 rural communities in 20 countries. We collected data on families and households in two questionnaires, and data on cardiovascular risk factors in a third questionnaire, which was supplemented with physical examination. We assessed socioeconomic status using education and a household wealth index. Education was categorised as no or primary school education only, secondary school education, or higher education, defined as completion of trade school, college, or university. Household wealth, calculated at the household level and with household data, was defined by an index on the basis of ownership of assets and housing characteristics. Primary outcomes were major cardiovascular disease (a composite of cardiovascular deaths, strokes, myocardial infarction, and heart failure), cardiovascular mortality, and all-cause mortality. Information on specific events was obtained from participants or their family.
FINDINGS: Recruitment to the study began on Jan 12, 2001, with most participants enrolled between Jan 6, 2005, and Dec 4, 2014. 160 299 (87·9%) of 182 375 participants with baseline data had available follow-up event data and were eligible for inclusion. After exclusion of 6130 (3·8%) participants without complete baseline or follow-up data, 154 169 individuals remained for analysis, from five low-income, 11 middle-income, and four high-income countries. Participants were followed-up for a mean of 7·5 years. Major cardiovascular events were more common among those with low levels of education in all types of country studied, but much more so in low-income countries. After adjustment for wealth and other factors, the HR (low level of education vs high level of education) was 1·23 (95% CI 0·96-1·58) for high-income countries, 1·59 (1·42-1·78) in middle-income countries, and 2·23 (1·79-2·77) in low-income countries (pinteraction<0·0001). We observed similar results for all-cause mortality, with HRs of 1·50 (1·14-1·98) for high-income countries, 1·80 (1·58-2·06) in middle-income countries, and 2·76 (2·29-3·31) in low-income countries (pinteraction<0·0001). By contrast, we found no or weak associations between wealth and these two outcomes. Differences in outcomes between educational groups were not explained by differences in risk factors, which decreased as the level of education increased in high-income countries, but increased as the level of education increased in low-income countries (pinteraction<0·0001). Medical care (eg, management of hypertension, diabetes, and secondary prevention) seemed to play an important part in adverse cardiovascular disease outcomes because such care is likely to be poorer in people with the lowest levels of education compared to those with higher levels of education in low-income countries; however, we observed less marked differences in care based on level of education in middle-income countries and no or minor differences in high-income countries.
INTERPRETATION: Although people with a lower level of education in low-income and middle-income countries have higher incidence of and mortality from cardiovascular disease, they have better overall risk factor profiles. However, these individuals have markedly poorer health care. Policies to reduce health inequities globally must include strategies to overcome barriers to care, especially for those with lower levels of education.
FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).
METHODS: We assessed fruit and vegetable consumption using data from country-specific, validated semi-quantitative food frequency questionnaires in the Prospective Urban Rural Epidemiology (PURE) study, which enrolled participants from communities in 18 countries between Jan 1, 2003, and Dec 31, 2013. We documented household income data from participants in these communities; we also recorded the diversity and non-sale prices of fruits and vegetables from grocery stores and market places between Jan 1, 2009, and Dec 31, 2013. We determined the cost of fruits and vegetables relative to income per household member. Linear random effects models, adjusting for the clustering of households within communities, were used to assess mean fruit and vegetable intake by their relative cost.
FINDINGS: Of 143 305 participants who reported plausible energy intake in the food frequency questionnaire, mean fruit and vegetable intake was 3·76 servings (95% CI 3·66-3·86) per day. Mean daily consumption was 2·14 servings (1·93-2·36) in low-income countries (LICs), 3·17 servings (2·99-3·35) in lower-middle-income countries (LMICs), 4·31 servings (4·09-4·53) in upper-middle-income countries (UMICs), and 5·42 servings (5·13-5·71) in high-income countries (HICs). In 130 402 participants who had household income data available, the cost of two servings of fruits and three servings of vegetables per day per individual accounted for 51·97% (95% CI 46·06-57·88) of household income in LICs, 18·10% (14·53-21·68) in LMICs, 15·87% (11·51-20·23) in UMICs, and 1·85% (-3·90 to 7·59) in HICs (ptrend=0·0001). In all regions, a higher percentage of income to meet the guidelines was required in rural areas than in urban areas (p<0·0001 for each pairwise comparison). Fruit and vegetable consumption among individuals decreased as the relative cost increased (ptrend=0·00040).
INTERPRETATION: The consumption of fruit and vegetables is low worldwide, particularly in LICs, and this is associated with low affordability. Policies worldwide should enhance the availability and affordability of fruits and vegetables.
FUNDING: Population Health Research Institute, the Canadian Institutes of Health Research, Heart and Stroke Foundation of Ontario, AstraZeneca (Canada), Sanofi-Aventis (France and Canada), Boehringer Ingelheim (Germany and Canada), Servier, GlaxoSmithKline, Novartis, King Pharma, and national or local organisations in participating countries.
METHODS: We did a parallel, two-arm, prospective observational study of opioid-dependent individuals aged 18 years and older who were treated in Malaysia in the Klang Valley in two settings: CDDCs and VTCs. We used sequential sampling to recruit individuals. Assessed individuals in CDDCs were required to participate in services such as counselling sessions and manual labour. Assessed individuals in VTCs could voluntarily access many of the components available in CDDCs, in addition to methadone therapy. We undertook urinary drug tests and behavioural interviews to assess individuals at baseline and at 1, 3, 6, 9, and 12 months post-release. The primary outcome was time to opioid relapse post-release in the community confirmed by urinary drug testing in individuals who had undergone baseline interviewing and at least one urine drug test (our analytic sample). Relapse rates between the groups were compared using time-to-event methods. This study is registered at ClinicalTrials.gov (NCT02698098).
FINDINGS: Between July 17, 2012, and August 21, 2014, we screened 168 CDDC attendees and 113 VTC inpatients; of these, 89 from CDDCs and 95 from VTCs were included in our analytic sample. The baseline characteristics of the two groups were similar. In unadjusted analyses, CDDC participants had significantly more rapid relapse to opioid use post-release compared with VTC participants (median time to relapse 31 days [IQR 26-32] vs 352 days [256-unestimable], log rank test, p<0·0001). VTC participants had an 84% (95% CI 75-90) decreased risk of opioid relapse after adjustment for control variables and inverse propensity of treatment weights. Time-varying effect modelling revealed the largest hazard ratio reduction, at 91% (95% CI 83-96), occurs during the first 50 days in the community.
INTERPRETATION: Opioid-dependent individuals in CDDCs are significantly more likely to relapse to opioid use after release, and sooner, than those treated with evidence-based treatments such as methadone, suggesting that CDDCs have no role in the treatment of opioid-use disorders.
FUNDING: The World Bank Group, Doris Duke Charitable Foundation, National Institute on Drug Abuse, Australian National Health & Medical Research Council, National Institute of Mental Health, and the University of Malaya-Malaysian Ministry of Higher Education High Impact Research Grant.
METHODS: We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa). We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide.
FINDINGS: Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the Congo, and South Sudan, where vaccination coverage in 2016 was estimated to be substantially less than the recommended threshold to prevent outbreaks. Overall, we estimated that vaccination coverage levels achieved by 2016 avert between 94 336 and 118 500 cases of yellow fever annually within risk zones, on the basis of conservative and optimistic vaccination scenarios. The areas outside at-risk regions with predicted high receptivity to yellow fever transmission (eg, parts of Malaysia, Indonesia, and Thailand) were less extensive than the distribution of the main urban vector, A aegypti, with low receptivity to yellow fever transmission in southern China, where A aegypti is known to occur.
INTERPRETATION: Our results provide the evidence base for targeting vaccination campaigns within risk zones, as well as emphasising their high effectiveness. Our study highlights areas where public health authorities should be most vigilant for potential spread or importation events.
FUNDING: Bill & Melinda Gates Foundation.
METHODS: In this prospective cohort study, data on newly diagnosed patients with cancer were derived from the ASEAN Costs in Oncology (ACTION) cohort study, a prospective longitudinal study in 47 centres located in eight countries in southeast Asia. The ACTION study measured household expenditures on complementary medicine in the immediate year after cancer diagnosis. Participants were given cost diaries at baseline to record illness-related payments that were directly incurred and not reimbursed by insurance over the 12-month period after study recruitment. We assessed incidence of financial catastrophe (out-of-pocket cancer-related costs ≥30% of annual household income), medical impoverishment (reduction in annual household income to below poverty line following subtraction of out-of-pocket cancer-related costs), and economic hardship (inability to make necessary household payments) at 1 year.
FINDINGS: Between March, 2012, and September, 2013, 9513 participants were recruited into the ACTION cohort study, of whom 4754 (50·0%) participants were included in this analysis. Out-of-pocket expenditures on complementary medicine were reported by 1233 households. These payments constituted 8·6% of the annual total out-of-pocket health costs in lower-middle-income countries and 42·9% in upper-middle-income countries. Expenditures on complementary medicine significantly increased risks of financial catastrophe (adjusted odds ratio 1·52 [95% CI 1·23-1·88]) and medical impoverishment (1·75 [1·36-2·24]) at 12 months in upper-middle-income countries only. However, the risks were significantly higher for economically disadvantaged households, irrespective of country income group.
INTERPRETATION: Integration of evidence-supported complementary therapies into mainstream cancer care, along with interventions to address use of non-evidence-based complementary medicine, might help alleviate any associated adverse financial impacts.
FUNDING: None.
METHODS: The Burden of Obstructive Lung Disease study is a multinational cross-sectional study of 41 municipalities in 34 countries across all WHO regions. Adults aged 40 years or older who were not living in an institution were eligible to participate. To ensure a representative sample, participants were selected from a random sample of the population according to a predefined site-specific sampling strategy. We included participants' data in this study if they completed the core study questionnaire and had acceptable spirometry according to predefined quality criteria. We excluded participants with a contraindication for lung function testing. We defined small airways obstruction as either mean forced expiratory flow rate between 25% and 75% of the forced vital capacity (FEF25-75) less than the lower limit of normal or forced expiratory volume in 3 s to forced vital capacity ratio (FEV3/FVC ratio) less than the lower limit of normal. We estimated the prevalence of pre-bronchodilator (ie, before administration of 200 μg salbutamol) and post-bronchodilator (ie, after administration of 200 μg salbutamol) small airways obstruction for each site. To identify risk factors for small airways obstruction, we performed multivariable regression analyses within each site and pooled estimates using random-effects meta-analysis.
FINDINGS: 36 618 participants were recruited between Jan 2, 2003, and Dec 26, 2016. Data were collected from participants at recruitment. Of the recruited participants, 28 604 participants had acceptable spirometry and completed the core study questionnaire. Data were available for 26 443 participants for FEV3/FVC ratio and 25 961 participants for FEF25-75. Of the 26 443 participants included, 12 490 were men and 13 953 were women. Prevalence of pre-bronchodilator small airways obstruction ranged from 5% (34 of 624 participants) in Tartu, Estonia, to 34% (189 of 555 participants) in Mysore, India, for FEF25-75, and for FEV3/FVC ratio it ranged from 5% (31 of 684) in Riyadh, Saudi Arabia, to 31% (287 of 924) in Salzburg, Austria. Prevalence of post-bronchodilator small airways obstruction was universally lower. Risk factors significantly associated with FEV3/FVC ratio less than the lower limit of normal included increasing age, low BMI, active and passive smoking, low level of education, working in a dusty job for more than 10 years, previous tuberculosis, and family history of chronic obstructive pulmonary disease. Results were similar for FEF25-75, except for increasing age, which was associated with reduced odds of small airways obstruction.
INTERPRETATION: Despite the wide geographical variation, small airways obstruction is common and more prevalent than chronic airflow obstruction worldwide. Small airways obstruction shows the same risk factors as chronic airflow obstruction. However, further research is required to investigate whether small airways obstruction is also associated with respiratory symptoms and lung function decline.
FUNDING: National Heart and Lung Institute and Wellcome Trust.
TRANSLATIONS: For the Dutch, Estonian, French, Icelandic, Malay, Marathi, Norwegian, Portuguese, Swedish and Urdu translations of the abstract see Supplementary Materials section.