Displaying all 2 publications

Abstract:
Sort:
  1. Graham NS, Hammond JP, Lysenko A, Mayes S, O Lochlainn S, Blasco B, et al.
    Plant Cell, 2014 Jul;26(7):2818-30.
    PMID: 25082855 DOI: 10.1105/tpc.114.128603
    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.
  2. Walerowski P, Gündel A, Yahaya N, Truman W, Sobczak M, Olszak M, et al.
    Plant Cell, 2018 Nov 09.
    PMID: 30413655 DOI: 10.1105/tpc.18.00283
    Successful biotrophic plant pathogens can divert host nutrition towards infection sites. Here we describe how the protist Plasmodiophora brassicae establishes a long-term feeding relationship with its host by stimulating phloem differentiation and phloem-specific expression of sugar transporters within developing galls. Development of galls in infected Arabidopsis thaliana plants is accompanied by stimulation of host BREVIS RADIX (BRX), COTYLEDON VASCULAR PATTERN 2 (CVP2) and OCTOPUS (OPS) gene expression leading to an increase in phloem complexity. We characterised how the arrest of this developmental reprogramming influences both the host and the invading pathogen. Furthermore, we found that infection leads to phloem-specific accumulation of SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS (SWEET11 and SWEET12) facilitating local distribution of sugars towards the pathogen. Utilising Fourier-transform infrared (FTIR) microspectroscopy to monitor spatial distribution of carbohydrates, we found that infection leads to the formation of a strong physiological sink at the site of infection. High resolution metabolic and structural imaging of sucrose distributions revealed that sweet11 sweet12 double mutants are impaired in sugar transport towards the pathogen, delaying disease progression. This work highlights the importance of precise regulation of sugar partitioning for plant-pathogen interactions and the dependence of P. brassicae's performance on its capacity to induce a phloem sink at the feeding site.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links